期刊文献+

攻防对抗中的加密恶意流量分析技术 被引量:1

Encrypted Malicious Traffic Analysis Technology in Offensive and Defensive Confrontation
在线阅读 下载PDF
导出
摘要 随着网络的不断发展,安全需求的不断提升,加密技术成为保障流量安全的首选,但同时也带来了加密恶意流量的激增,面对复杂多变的网络环境,如何在不解密条件下快速识别其中的恶意流量对提升网络安全防护能力具有重要的意义。以恶意流量分类为研究基础,梳理目前比较流行的加密恶意流量分析识别技术,聚焦基于单维特征和多维特征的流量识别方法,探讨前沿技术在加密恶意流量分析领域的应用研究,为后续研究指出了方向。 With the continuous development of the network and the continuous improvement of security requirements, encryption technology becomes the first choice for ensuring traffic security, but at the same time, it also brings about a surge in encrypted malicious traffic. In the face of complex and changeable network environment, how to quickly identify malicious traffic without decryption is of great significance to improve network security protection capabilities. Based on malicious traffic classification, this paper sorts out currently popular encrypted malicious traffic analysis and identification technologies, focuses on traffic identification methods based on single-dimensional features and multi-dimensional features, and discusses the application of cutting-edge technologies in the field of encrypted malicious traffic analysis,and points out the direction for subsequent research.
作者 陆勰 徐雷 张曼君 张超 LU Xie;XU Lei;ZHANG Manjun;ZHANG Chao(Research Institute of China United Network Communications Group Co.,Ltd.,Beijing 100048,China;Network Department of China United Network Communication Group Co.,Ltd.,Beijing 100035,China)
出处 《信息安全与通信保密》 2022年第3期71-79,共9页 Information Security and Communications Privacy
关键词 加密 恶意 流量 特征 机器学习 encryption malicious traffic feature machine learning
  • 相关文献

参考文献5

二级参考文献109

  • 1熊刚,孟姣,曹自刚,王勇,郭莉,方滨兴.网络流量分类研究进展与展望[J].集成技术,2012,1(1):32-42. 被引量:24
  • 2陈晓峰,王育民.公钥密码体制研究与进展[J].通信学报,2004,25(8):109-118. 被引量:28
  • 3ROUGHAN M, SEN S, SPATSCHECK O, et al. Class-of-service mapping for QoS: a statistical signature-based approach to IP traffic classification[C]//The 4th ACM SIGCOMM Conference on Interact measurement. ACM, 2004: 135-148.
  • 4DINGLEDINE R, MATHEWSON N, SYVERSON P. Tor: the sec- ond-generation onion router[R]. Naval Research Lab Washington DC, 2004.
  • 5GOMES J V, INACIO P R M, PEREIRA M, et al. Detection and clas- sification of peer-to-peer traffic: a survey[J]. ACM Computing Sur-veys (CSUR), 2013, 45(3): 30.
  • 6GILL P, ARLITT M, LI Z, et al. Youtube traffic characterization: a view from the edge[C]/fFhe 7th ACM SIGCOMM Conference on Internet Measurement. ACM, 2007:15-28.
  • 7ZHANG X B, LAM S S, LEE D Y, et al. Protocol design for scalable and reliable group rekeying[J]. IEEE/ACM Transactions on Network- ing, 2003, 11(6): 908-922.
  • 8BARRY S. Google starts giving a ranking boost to secure HTTPS/SSL sites [EB/OL]. http://searchengineland.com/google-starts-giving- ranking- boost-secure-httpsssl-sites- 199446, 2015.
  • 9NGUYEN T T T, ARMITAGE G, A survey of techniques for intemet traffic classification using machine learning[J]. Communications Sur- veys & Tutorials, IEEE, 2008, 10(4): 56-76.
  • 10NAMDEV N, AGRAWAL S, SILKARI S. Recent advancement in machine learning based internet traffic classification[J]. Procedia Computer Science, 2015, 60: 784-791.

共引文献114

同被引文献5

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部