期刊文献+

小尺度湍流对近极限非预混火焰熄灭极限的影响 被引量:4

Effect of Small-Scale Turbulence on Extinction Limit of Near-Limit Non-Premixed Flames
在线阅读 下载PDF
导出
摘要 基于“比拟理论(analogy theory)”,本文研究了小尺度湍流引发的传热传质增强作用对湍流非预混火焰熄灭极限的影响.结果表明:小尺度涡的传热传质增强作用使湍流非预混火焰层厚度增厚,火焰温度降低,火焰层内活性自由基H和OH的摩尔分数降低.化学反应时间和停留时间都随湍流强度增加而增加;但在同一湍流强度下,不同燃料浓度的非预混火焰熄灭临界达姆克勒数(Damköhler number)近似为定值,该临界达姆克勒数随着湍流脉动速度的增加而增加. The effect of heat and mass transfer enhancement induced by small-scale turbulence on the extinction limit of turbulent non-premixed flames was studied using the“Analogy theory”.The results show that the heat and mass transfer enhancement induced by small-scale vortex leads to the thickening of turbulent non-premixed flame layer,the decrease of flame temperature,and the reduction of mole fraction of active H and OH radicals in the flame layer.The chemical reaction time and residence time increase as the turbulence intensity increases.In addition,the critical Damköhler number of non-premixed flames with different fuel concentrations is approximately a constant at the same turbulence intensity.However,the critical Damköhler number increases with the increase of turbulent fluctuating velocity.
作者 邹俊 杨协和 张扬 吴玉新 张海 吕俊复 Zou Jun;Yang Xiehe;Zhang Yang;Wu Yuxin;Zhang Hai;LüJunfu(Key Laboratory for Thermal Science and Power Engineering of Ministry of Education,Department of Energy and Power Engineering,Tsinghua University,Beijing 100084,China)
出处 《燃烧科学与技术》 CAS CSCD 北大核心 2022年第2期190-197,共8页 Journal of Combustion Science and Technology
基金 国家自然科学基金资助项目(51706119) 四川省科技计划资助项目(2018JZ0021,2019YFS0497).
关键词 小尺度湍流 小火焰 扩散火焰 熄灭极限 传热传质 small-scale turbulence flamelet diffusion flame extinction limit heat and mass transfer
  • 相关文献

参考文献3

二级参考文献14

  • 1Maruta K,Ju Y,Honda A, et al. Lewis number effecton extinction characteristics of radiative counterflowCH4-02-N2-He flames [J]. Proceedings of the Combus-tion Institute, 1998,27: 2611-2617.
  • 2Ronney P D. Flame structure modification and quenchingby turbulence [J]. Combustion Science and Techno-logy, 1999, 6: 53-76.
  • 3Karlovitz B,Denniston D W,Knapschaefer D H, etal. Studies on turbulent flames [J]. Proceedings of theCombustion Institute, 1953,4: 613-620.
  • 4Abdel-Gayed R,Bradley D. Criteria for turbulent proa-gation limits of premixed flames [J], Combustion andFlame, 1985,62: 61-68.
  • 5Yang S I,Shy S S. Global quenching of premixedCH4/air flames : Effects of turbulent straining ,equivalence ratio, and radiative heat loss [J]. Proceed-ings of the Combustion Institute, 2002 , 29 : 1841-1847.
  • 6Kostiuk L W, Bray K N C, Cheng R K. Experimentalstudy of premixed turbulent combustion in opposedstreams ( I) : Nonreacting flow field [J]. Combustionand Flame, 1993,92: 377-395.
  • 7Kostiuk L W, Bray K N C, Cheng R K. Experimentalstudy of premixed turbulent combustion in opposedstreams (II) : Reacting flow field and extinction [J].Combustion and Flame, 1993,92: 396-409.
  • 8Coppola G, Coriton B, Gomez A. Highly turbulentcounterflow flames : A laboratory scale benchmark forpractical systems [ J]. Combustion and Flame,2009,156; 1834-1843.
  • 9Cho P,Law C K, Hertzberg J R,et al. Structure andpropagation of turbulent premixed flames stabilized in astagnation flow [C]// Twenty-First Symposium (Interna-tional) on Combustion. Pittsburgh : The Combustion In-stitute, 1988: 1493-1499.
  • 10Coppola G,Gomez A. Experimental investigation on aturbulence generation system with high-blockage plates[J]. Experimental Thermal and Fluid Science, 2009,33: 1037-1048.

共引文献2

同被引文献60

引证文献4

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部