期刊文献+

Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery 被引量:5

部分磷化双金属中心集成制备高性能三功能催化剂用于制氢和柔性锌-空气电池
原文传递
导出
摘要 The development of robust and efficient trifunctional catalysts showing excellent oxygen evolution reaction(OER), oxygen reduction reaction(ORR) and hydrogen evolution reaction(HER) kinetics has been challenging.Herein, we prepared a hybrid iron and cobalt-based metal alloy phosphide on a phosphorus and nitrogen co-doped carbon substrate(Fe Co-P/PNC) as a catalyst using a one-step Pregulation method. The catalyst exhibited a positive half-wave potential of 0.86 V versus the reversible hydrogen electrode(RHE) for ORR, and low overpotentials of 350 and 158 m V for OER and HER, respectively, to achieve a current density of10 m A cm^(-2). Density functional theory calculations demonstrated the dominant role of P in both Fe Co phosphide and carbon matrix, which led to the good ORR, OER and HER kinetics. The assembled aqueous and flexible Zn-air batteries with Fe Co-P/PNC as the air cathode displayed excellent peak power densities of 195.1 and 90.8 m W cm^(-2), respectively, as well as outstanding charging-discharging performance, long lifetime, and high flexibility. Moreover, the self-powered overall water-splitting cell exhibited a low working voltage of1.71 V to achieve a current density of 10 m A cm^(-2), confirming its excellent multifunctional OER/ORR/HER activity. 开发高效且性能稳定的氧析出(OER)、氧还原(ORR)和氢析出(HER)三功能催化剂是制备能源存储与转换设备的关键.本文使用一步磷化法,在氮磷共掺杂碳基上制备了Fe Co金属合金/磷化物催化剂(Fe Co-P/PNC).该催化剂显示了良好的ORR性能,展现了0.86 V (vs.RHE,相对于可逆氢电极)的半波电位;在OER和HER反应中,催化剂在10 m A cm^(-2)的电流密度下的过电位分别为350和158 m V.密度泛函理论计算表明,磷在Fe Co磷化物和碳基体中皆起主导作用,使得该催化剂同时具有良好的ORR、OER和HER功能.以Fe Co-P/PNC为空气阴极组装的水系电池和柔性锌-空气电池的峰值功率密度分别为195.1和90.8 m W cm^(-2),且两种电池均具有优异的充放电性能、长寿命和高柔性.此外,自供能的整体水分解系统表现出较低的(1.71 V)工作电压以驱动10 m A cm^(-2)的电流密度,进一步证实了该催化剂出色的多功能性.
作者 Miaosen Yang Yifan Liu Jiaqiang Sun Shusheng Zhang Xijun Liu Jun Luo 杨淼森;刘亦帆;孙甲强;张书胜;刘熙俊;罗俊(School of Chemical Engineering,Northeast Electric Power University,Jilin 132012,China;Nanchang Institute of Technology,Nanchang 330044,China;College of Physics and Optoelectronic Engineering,Shenzhen University,Shenzhen 518060,China;State Key Laboratory of Coal Conversion,Institute of Coal Chemistry,Chinese Academy of Sciences,Taiyuan 030001,China;College of Chemistry,Zhengzhou University,Zhengzhou 450000,China;Institute for New Energy Materials&Low-Carbon Technologies and Tianjin Key Lab for Photoelectric Materials&Devices,School of Materials Science and Engineering,Tianjin University of Technology,Tianjin 300384,China;MOE Key Laboratory of New Processing Technology for Non-Ferrous Metals and Materials,and Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials,School of Resource,Environments and Materials,Guangxi University,Nanning 530004,China)
出处 《Science China Materials》 SCIE EI CAS CSCD 2022年第5期1176-1186,共11页 中国科学(材料科学(英文版)
基金 financially supported by the National Natural Science Foundation of China (22075211, 62005173 and 21601136) Tianjin Science Fund for Distinguished Young Scholars (19JCJQJC61800) the Research Fund of State Key Laboratory for Marine Corrosion and Protection of Luoyang Ship Material Research Institute (LSMRI) under the contract No. KF190411 the Science and Technology Development Fund of Tianjin Education Commission for Higher Education (2018KJ126)。
  • 相关文献

参考文献2

二级参考文献9

共引文献22

同被引文献40

引证文献5

二级引证文献20

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部