期刊文献+

基于ISPH-TLSPH的充液多柔体动力学建模与计算 被引量:2

Dynamic modeling and simulation of fluid-filled flexible multibody system based on ISPH-TLSPH method
原文传递
导出
摘要 基于不可压光滑粒子流体动力学(Incompressible Smoothed Particle Hydrodynamics,ISPH)和全拉格朗日光滑粒子流体动力学(TLSPH)基本理论,提出了一种求解充液多柔体动力学数值模拟方法.与传统SPH方法相比,该方法可采用较大的时间步长、可避免压力振荡与柔性部件拉伸不稳定问题.通过求解混合压力泊松方程和引入位移修正技术可得到光滑的液体压力分布结果,通过添加人工黏性项使得TLSPH在数值计算中更稳定.流体域计算时,将固体粒子假设为虚粒子参与到求解压力泊松方程中.固体域计算时,流体粒子对固体粒子的相互作用力作为固体受到的外力加入到动量方程中.最后,采用5个数值算例与实验分别验证了ISPH,TLSPH和ISPH-TLSPH耦合算法的有效性,并将提出的方法应用于充液多柔体动力学问题的模拟. Based on the incompressible smoothed particle hydrodynamics(ISPH) and total Lagrange smoothed particle hydrodynamics(TLSPH) method, a numerical computation methodology is proposed for simulating the dynamics of fluid-filled flexible multibody systems. Compared with the conventional SPH method, a larger time step can be used in the iteration procedure, the obtained pressure fields are free from spurious oscillations, and the tensile instability problem in simulation of the flexible bodies can also be alleviated. With the particle shifting technology, the smooth pressure field of the fluid can be obtained by solving the hybrid pressure poisson equation. An artificial viscosity term is introduced to maintain the numerical stability of the TLSPH. On the fluid domain, the solid particles are treated as dummy particles to solve the pressure poisson equation in the ISPH. On the solid domain, the interaction forces between fluid particles and solid particles are applied in the momentum equation as external forces within the TLSPH solver. Finally, the effectiveness of the ISPH, TLSPH and ISPH-TLSPH coupling method is validated by five numerical examples and experiment, and then the proposed method is applied to simulate the dynamics of fluid-filled flexible multibody system.
作者 孔伟振 陈占魁 田强 KONG WeiZhen;CHEN ZhanKui;TIAN Qiang(School of Aerospace Engineering,Beijing Institute of Technology,Beijing 100081,China)
出处 《中国科学:物理学、力学、天文学》 CSCD 北大核心 2022年第4期80-95,共16页 Scientia Sinica Physica,Mechanica & Astronomica
基金 国家自然科学基金(编号:11832005)资助项目。
关键词 不可压光滑粒子流体动力学 全拉格朗日光滑粒子流体动力学 多柔体系统动力学 液体晃动 incompressible smoothed particle hydrodynamics total Lagrange smoothed particle hydrodynamics flexible multibody dynamics liquid sloshing
  • 相关文献

参考文献6

二级参考文献40

共引文献81

同被引文献18

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部