期刊文献+

Pointwise Characterizations of Besov and Triebel–Lizorkin Spaces with Generalized Smoothness and Their Applications 被引量:1

原文传递
导出
摘要 In this article,the authors first establish the point wise characterizations of Besov and Triebel-Lizorkin spaces with generalized smoothness on R;via the Hajlasz gradient sequences,which serve as a way to extend these spaces to more general metric measure spaces.Moreover,on metric spaces with doubling measures,the authors further prove that the Besov and the Triebel-Lizorkin spaces with generalized smoothness defined via Hajlasz gradient sequences coincide with those defined via hyperbolic fillings.As an application,some trace theorems of these spaces on Ahlfors regular spaces are established.
出处 《Acta Mathematica Sinica,English Series》 SCIE CSCD 2022年第4期623-661,共39页 数学学报(英文版)
基金 the National Natural Science Foundation of China(Grant Nos.11971058,12071197 and 11871100) the National Key Research and Development Program of China(Grant No.2020YFA0712900)。
  • 相关文献

参考文献1

二级参考文献6

  • 1Yongping Liu,Guozhen Lu,Richard L. Wheeden.Some equivalent definitions of high order Sobolev spaces on stratified groups and generalizations to metric spaces[J].Mathematische Annalen.2002(1)
  • 2Piotr Haj?asz.Sobolev spaces on an arbitrary metric space[J].Potential Analysis.1996(4)
  • 3Alf Jonsson.Brownian motion on fractals and function spaces[J].Mathematische Zeitschrift.1996(1)
  • 4Hu,J.A note on Hajlasz-Sobolev spaces on fractals, J.Math[].Anal Appl.2003
  • 5Strichartz,R. S.Function spaces on fractals, J[].Journal of Functional Analysis.2003
  • 6Yongsheng Han (1) , Shanzhen Lu (2) , Dachun Yang (2).INHOMOGENEOUS BESOV AND TRIEBEL-LIZORKING SPACES ON SPACES OF HOMOGENEOUS TYPE[J].Analysis in Theory and Applications,1999,15(3):37-65. 被引量:6

共引文献4

同被引文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部