期刊文献+

基于深度并行CNN-BiLSTM的能源互联网电负荷和热负荷联合预测模型 被引量:12

Joint forecasting model of electrical load and thermal load based on deep parallel CNN-BiLSTM in energy internet
在线阅读 下载PDF
导出
摘要 为提升电、热负荷预测能力,适应能源互联网的多能源互联状态,设计由双向长短期记忆网络和并行卷积神经子网络组成的深层次电、热负荷联合预测模型,以便联合捕获强依赖性、多维度、抽象的电、热负荷特征信息。经仿真可知,该联合预测模型的综合负荷误差均值比低于串行网络模型约3%;其联合预测方式的综合负荷误差均值比低于单负荷预测模型约3%,同时其训练时长和预测时长均约为单负荷预测模型的一半;与同领域RNN-Net、LSTMNet、CNN-Net、Shi-Net相比,其电负荷、热负荷、综合负荷误差均值比最低,分别为0.0315、0.0301和0.0311。说明本模型与串行网络相比,其并行网络有利于捕获多层次负荷特征;与单负荷预测方式相比,其联合预测方式可采用较高效率捕获电、热负荷的互联信息;它具备较优的电、热负荷联合预测性能,适用于电负荷、热负荷联合预测任务。 In order to improve the power and heat load forecasting ability and adapt to the multi energy interconnection state of the energy internet,a deep-seated electric and thermal load forecasting model composed of bidirectional long-term memory network and parallel convolution neural sub network is designed to capture the strong dependence,multi-dimensional and sampled characteristic information of electric and thermal load.The simulation results show that the average percentage of comprehensive load error of the joint forecasting model was about 3%lower than that of the serial network model.The average percentage of the comprehensive load error of the joint forecasting model was about 3%lower than that of the single load forecasting model,and its training time and prediction time are about half of that of the single load forecasting model.Compared with RNN-Net,LSTM-Net,CNN-Net and Shi-Net in the same field,the average error percentage of electric load,heat load and comprehensive load in this model was the lowest,which are 0.0315,0.0301 and 0.0311,respectively.It shows that compared with the serial network,the parallel network of this model is advantageous to capture the multi-level load characteristics.Compared with the single load forecasting mode,its joint forecasting mode can capture the interconnection information of electric and thermal loads with higher efficiency.The model has better joint forecasting performance of electric and thermal loads,and is suitable for joint forecasting tasks of electric and thermal loads.
作者 廖清阳 王军 胡凯强 宋尧 宗志亚 范俊秋 LIAO Qingyang;WANG Jun;HU Kaiqiang;SONG Yao;ZONG Zhiya;FAN Junqiu(GuiAn Power Supply Bureau of Guizhou Power Grid Co.,Ltd.,Guian 550025,China;South China University of Technology,Guangzhou 510599,China)
出处 《中国测试》 CAS 北大核心 2022年第4期146-153,共8页 China Measurement & Test
基金 贵州电网有限责任公司科技项目(061000KK52180003)。
关键词 电负荷 热负荷 联合预测 卷积神经网络 双向长短期记忆网络 electrical load thermal load joint forecasting convolution neural network bidirectional long short term memory network
  • 相关文献

参考文献15

二级参考文献145

共引文献324

同被引文献137

引证文献12

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部