期刊文献+

基于强化学习的全电推进卫星变轨优化方法 被引量:3

Optimization method for orbit transfer of all-electric propulsion satellite based on reinforcement learning
在线阅读 下载PDF
导出
摘要 采用电推力器实现自主轨道转移是全电推进卫星领域的关键技术之一。针对地球同步轨道(geostationary orbit,GEO)全电推进卫星的轨道提升问题,将广义优势估计(generalized advantage estimator,GAE)和近端策略优化(proximal policy optimization,PPO)方法相结合,在考虑多种轨道摄动影响以及地球阴影约束的情况下,提出了基于强化学习的时间最优小推力变轨策略优化方法。针对状态空间过大、奖励稀疏导致训练困难这一关键问题,提出了动作输出映射和分层奖励等训练加速方法,有效提升了训练效率,加快了收敛速度。数值仿真和结果对比表明,所提方法更加简单、灵活、高效,与传统的直接法、间接法以及反馈控制法相比,能够保证轨道转移时间的最优性。 Using electric thrusters for autonomous orbit transfer is one of the critical technologies in the field of all-electric propulsion satellites.In order to solve the orbit raising problem of all-electric propulsion geostationary orbit(GEO)satellites,a reinforcement learning-based optimization method for the time-optimal low-thrust orbit transfer strategy is formulated by combining generalized advantage estimator(GAE)and proximal policy optimization(PPO)methods,taking into account the influence of multiple orbital perturbations and the constraints of the earth’s shadow.Aiming at the key problem of training difficulty caused by too large state space and sparse reward,training acceleration methods such as action output mapping and hierarchical reward are proposed,which effectively improve the training efficiency and accelerate the convergence speed.Through numerical simulation and comparison of the results with the direct method,the indirect method and the feedback control method,it shows that the optimization method based on reinforcement learning is more simple,flexible,efficient,and time-optimal in orbit transfer.
作者 韩明仁 王玉峰 HAN Mingren;WANG Yufeng(Beijing Institute of Control Engineering, Beijing 100094, China;Science and Technology on Space Intelligent Control Laboratory, Beijing 100094, China)
出处 《系统工程与电子技术》 EI CSCD 北大核心 2022年第5期1652-1661,共10页 Systems Engineering and Electronics
基金 国家自然科学基金(11502017)资助课题。
关键词 全电推进卫星 小推力变轨优化 强化学习 近端策略优化 训练加速方法 all-electric propulsion satellite low-thrust orbit transfer optimization reinforcement learning proximal policy optimization(PPO) training acceleration method
  • 相关文献

参考文献6

二级参考文献55

  • 1张文志,吕恬生.Reactive fuzzy controller design by Q-learning for mobile robot navigation[J].Journal of Harbin Institute of Technology(New Series),2005,12(3):319-324. 被引量:5
  • 2梁新刚,杨涤.有限推力下时间最优轨道转移[J].航天控制,2007,25(1):46-51. 被引量:12
  • 3Betts J T. Survey of numerical methods for trajectory optimization [J]. Journal of Guidance, Control, and Dynamics. 1998, 21 (2) : 193 -207.
  • 4Betts J T. Very low-thrust trajectory optimization using a direct SQP method E J ]. Jonrnal of Computational and Applied Mathematics, 2000, 120(1): 27 -40.
  • 5Ulybyshev Y. Conlinunus thrust orbit transfer optimization using large-scale linear programming [ J 7- Journal of Guidance, Control, and Dynamics, 2007, 30(2): 427-436.
  • 6Kechichian J A. Optimal low earth orbit geostationary earth orbit intermediate acceleration orbit transfer[ J ]. Journal of Guidance, Control. and Dynamics, 1997, 20(4) : 803 -811.
  • 7Haberkorn T, Martinon P, Gergaud J. Low thrust minimum-time orbital transfer: a homotopic approach J . Journal of Guidance, Control, and Dynamics, 2004. 27 (6) : 1046 - 1060.
  • 8Oleson S R, Myars R M. Advanced propulsion flr geostationary orbit insertion and north-south station keeping [ J ]. Journal of Spacecraft and Rockets, 1997, 34(1) : 22 -28.
  • 9Kluever C A. Optimal geostationary orbit transfers using onboard chemical-electric propulsion [ J ]. Journal of Spacecr',fft and Rockets, 2012, 49(6) : 1174-1182.
  • 10Duchemin O, Marchandise F o Cornu N. Electric propulsion thruster assembly for future small geostationary comsats[ C 1. The 44th Joint Propulsion Conference. Hartford, CT, July 20 - 23, 2008.

共引文献66

同被引文献81

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部