期刊文献+

AFExplorer:Visual analysis and interactive selection of audio features 被引量:1

原文传递
导出
摘要 Acoustic quality detection is vital in the manufactured products quality control field since it represents the conditions of machines or products.Recent work employed machine learning models in manufactured audio data to detect anomalous patterns.A major challenge is how to select applicable audio features to meliorate model’s accuracy and precision.To relax this challenge,we extract and analyze three audio feature types including Time Domain Feature,Frequency Domain Feature,and Cepstrum Feature to help identify the potential linear and non-linear relationships.In addition,we design a visual analysis system,namely AFExplorer,to assist data scientists in extracting audio features and selecting potential feature combinations.AFExplorer integrates four main views to present detailed distribution and relevance of the audio features,which helps users observe the impact of features visually in the feature selection.We perform the case study with AFExplore according to the ToyADMOS and MIMII Dataset to demonstrate the usability and effectiveness of the proposed system.
出处 《Visual Informatics》 EI 2022年第1期47-55,共9页 可视信息学(英文)
基金 National Key Research and Development Program of China(2020YFB1707700) National Natural Science Foundation of China(61972356,62036009) Fundamental Research Funds for the Provincial Universities of Zhejiang,China(RF-A2020001).
  • 相关文献

参考文献1

二级参考文献5

  • 1Chen X X,Int Conference on Spoken Language Processing(ICSLP'2000),2000年
  • 2Li A J,Int Conference on Spoken Language Processing(ICSLP'2000),2000年
  • 3Zheng F,Int Symposium on Chinese Spoken Language Processing(ISCSLP'98),1998年,ASRA349页
  • 4Huang X D,Automatic Speech and Speaker Recognition:Advanced Topics,1996年,481页
  • 5Zheng F,学位论文,1992年

共引文献18

同被引文献9

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部