期刊文献+

基于并行搜索优化的指控系统自适应决策方法 被引量:4

Self-adaptation Decision-making Based on Parallel Search Optimization for Command and Control Information System
在线阅读 下载PDF
导出
摘要 指挥控制信息系统(指控系统)运行在动态变化的复杂环境中且任务需求时刻变更,亟需一种自适应决策方法以动态产生调整系统的最优策略,从而适应环境或任务变化,确保系统长期稳定运行.随着指控系统自身及其运行环境的持续复杂化,自适应决策方法需具备应对多个非预期变化的在线权衡决策能力,以避免造成冲突的调整后果或无法及时响应未知情况.然而,当前指控系统多采用基于先验知识、应对单一变化的自适应决策方法,尚无法完全满足该能力需求.因此,提出了一种基于并行搜索优化的指控系统自适应决策方法.方法采用基于搜索的软件工程思想,将自适应决策问题建模为搜索优化问题,并采用遗传粒子群算法,实现针对同时发生的多个变化进行在线权衡的目标.并且,为解决该方法在指控系统中实际应用时存在的搜索效率保障、策略择优选择问题,分别采用并行遗传算法和后优化理论,对决策方法实现了并行化并建立了策略多指标排序法,以确保方法的实用性. The command and control information system(command and control system)runs in a dynamically changing and complex environment with constantly changed mission requirements.A self-adaptation decision-making method is urgently needed to dynamically generate the optimal strategy for adjusting the system,so as to adapt to changes in the environment or missions and ensure the long-term stable operation.At present,as the command and control system itself and its operating environment continue to become more complex,self-adaptation decision-making methods need to have the online trade-off decision-making ability to deal with multiple unexpected changes,so as to avoid conflicting adjustment consequences or failure to respond to unknown situations in a timely manner.Nevertheless,the current command and control system mostly adopts self-adaptation decision-making methods based on prior knowledge and responding to single changes,which cannot fully meet this capability requirement.Therefore,this study proposes a self-adaptation decision-making method for the command and control system based on parallel search optimization.This method uses search-based software engineering ideas to model the self-adaptation decision-making problem as a search optimization problem,and uses the genetic particle swarm algorithm to achieve the goal of online weighing against multiple changes that occur at the same time.In addition,in order to solve the problems of search efficiency guarantee and strategy selection in the actual application of this method in the command and control system,this study uses parallel genetic algorithm and POST-optimization theory to parallelize the self-adaptation decision-making method and establish a strategy multi-index sorting method to ensure the practicality of the method.
作者 王璐 霍其恩 李青山 王展 姜宇轩 WANG Lu;HUO Qi-En;LI Qing-Shan;WANG Zhan;JIANG Yu-Xuan(School of Computer Science and Technology,Xidian University,Xi’an 710071,China)
出处 《软件学报》 EI CSCD 北大核心 2022年第5期1774-1799,共26页 Journal of Software
基金 国家自然科学基金青年基金(61902288) 国家自然科学基金(61672401) 国家重点研发计划(2019YFB1406404) 陕西省重点研发计划(908014487064)。
关键词 指挥控制信息系统 自适应决策 基于搜索的软件工程 并行遗传算法 后优化理论 command and control information system self-adaptation decision-making search-based software engineering parallel genetic algorithm POST-optimization
  • 相关文献

参考文献6

二级参考文献89

  • 1邹启杰,张汝波,唐平鹏,尹丽丽.基于多属性决策的自主等级评估算法[J].华中科技大学学报(自然科学版),2011,39(S2):382-384. 被引量:4
  • 2刘靖旭,谭跃进,蔡怀平.多属性决策中的线性组合赋权方法研究[J].国防科技大学学报,2005,27(4):121-124. 被引量:35
  • 3顾浩,王祥祖,程健庆.海上区域作战模拟分析系统技术[J].计算机仿真,2005,22(10):47-50. 被引量:7
  • 4Srinivas M, Patnaik L M. Adaptive probabilities of crossover and mutation in genetic algorithms [J ].IEEE Transactions on Systems, Man and Cybernetics, 1994,24(4): 656~667.
  • 5Michalewicz Z, Janikow C Z, Krawczyk J B. A modified genetic algorithm for optimal control problems[J].Computers Math Applic, 1992,23(12):83~94.
  • 6李体然 梁德文.美军“全球信息栅格”及其发展[J].装备参考,2002,(41).
  • 7Edmonds Albert J. C4I for the warrior-global command and control system: from concept to reality[A]. Defense Technical Information Center DTIC-LA[C]. 1996,1.
  • 8CRD Executive Agent Commander in Chief U. S. Joint Forces Command[A]. Global Information Grid ( GIG ) Capstone Requirements Document(CRD) Approved 30. 2001, 8.
  • 9Chairman of the joint chiefs of staff instruction[R]. CJCSI 6722.02 Global Command and Control System (GCCS) Operational Framework Policy. 2000, 3.
  • 10Director of command , control, communication, and computer (Joint Staff) Director, defense research and engineering (OSD)[R]. Advanced Battlespace Information System ( ABIS ) Task Force Report, 1996,2(5): 138.

共引文献112

同被引文献39

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部