期刊文献+

高压氢氧火箭发动机推力室燃烧稳定性分析 被引量:9

Analysis on combustion stability of thrust chamber in high pressure hydrogen-oxygen rocket engine
在线阅读 下载PDF
导出
摘要 针对高压氢氧火箭发动机推力室不设置隔板喷嘴和声腔的结构方案,利用火焰传递函数+低阶声学模型的解耦预测仿真方法,分析了不同喷注参数和结构参数下燃烧室的燃烧稳定性裕度。采用非定常雷诺平均NS方程(URANS)计算同轴直流喷嘴非稳态燃烧过程以获取火焰传递函数,其中采用Soave Redlich Kwong(SRK)状态方程计算密度等物性参数;考虑到同轴直流喷嘴的火焰长度与声波量级相当,采用分布式火焰结构进行火焰传递函数建模。采用商业软件COMSOL计算加载了火焰传递函数的燃烧室声学模态,使用模态增长率为评定标准,预测燃烧不稳定性。结果表明,给定不同燃气/氧喷注速度比、混合比、相对喷嘴压降、缩进深度比、富氢燃气喷前温度等各工况下,预测得到的燃烧室均未出现燃烧不稳定现象。在推力室设计中通过增加燃气/氧喷注速度比或降低燃烧室混合比,有利于提升燃烧稳定性裕度。所做工作为高压氢氧火箭发动机喷注器设计及燃烧稳定性裕度评估提供参考。 Aiming at the structural scheme of the thrust chamber without baffle nozzle and acoustic cavity in high-pressure hydrogen-oxygen rocket engine,the combustion stability of the combustion chamber under different injection parameters and structural parameters was analyzed by using the method of decoupling of unsteady combustion and acoustic system.The unsteady Reynolds-averaged NS equation(URANS)was used to calculate the unsteady combustion process of the shear coaxial injector and obtain the flame transfer function,and the Soave Redlich Kwong(SRK)state equation was used to obtain density and so on.Considering that the flame length of the shear coaxial injector was equivalent to the magnitude of the sound wave,the distributed flame structure was used for modeling the flame transfer function.The combustion chamber acoustic modes loaded with the nozzle flame transfer function were calculated by COMSOL,and the combustion instability was predicted by combining the calculated mode frequencies and their growth rates.The results showed that the predicted combustion stability of the chamber was stable under different gas/oxygen injection velocity ratio,mixing ratio,relative nozzle pressure drop,retraction depth ratio and per-injection temperature under given operating conditions.In the thrust chamber design,it is beneficial to improve the combustion stability by increasing the gas/oxygen injection velocity ratio or reducing the mixing ratio in the combustion chamber.The work provides a reference for the design of injector in high-pressure hydrogen-oxygen rocket engine and the combustion stability evaluation.
作者 刘倩 李敬轩 孙纪国 梁炫烨 向小林 潘亮 郑孟伟 LIU Qian;LI Jingxuan;SUN Jiguo;LIANG Xuanye;XIANG Xiaolin;PAN Liang;ZHENG Mengwei(Beijing Aerospace Propulsion Institute, Beijing 100076, China;School of Astronautics, Beihang University, Beijing 100191, China)
出处 《火箭推进》 CAS 2022年第2期66-75,共10页 Journal of Rocket Propulsion
基金 国家自然科学基金青年项目(51606138)。
关键词 高压氢氧火箭发动机 推力室 燃烧稳定性 数值仿真 火焰传递函数 high pressure hydrogen-oxygen rocket engine thrust chamber combustion stability numerical simulation flame transfer function
  • 相关文献

参考文献7

二级参考文献42

  • 1吴峰,王秋旺,罗来勤,孙纪国.液体推进剂火箭发动机推力室再生冷却通道三维流动与传热数值计算[J].航空动力学报,2005,20(4):707-712. 被引量:15
  • 2哈杰D T,里尔登F H.液体推进剂火箭发动机不稳定燃烧[M].朱宁昌,张宝炯,译.北京:国防工业出版社,1980.
  • 3Nieolay R K J, Mattstedt T B, Thelemann D. Status of cryogenic thrust chamber development for Ariane 5 at Astrium[R]. AIAA2000-3167, 2000.
  • 4Dodd F E, Malinzak R M, Connor M O G. Development of a low cost 650,000 lbf thrust H2/O2 booster engine injector[R]. AIAA 97-3314, 1997.
  • 5Fukushima Y, Nakatsuzi H. Development status of LE-7A and LE-5B engines for H-ⅡA family[R]. IAF97-S. 1.02, 1997.
  • 6Raehuk V S, Goncharov N S. Design, development, and history of the oxygen-hydrogen engine RD-0120[R]. AIAA95-2540,1995.
  • 7Thomas Byrd. The J-2X upper stage engine: from design to hardware[R]. AIAA 2010-6968, 2010.
  • 8Kurosu A, Yamanishi N, Sunakawa H. LE-X-Japanese next liquid booster engine[R]. AIAA2008-4665, 2008.
  • 9Kelm M D, Fry R S. Guidelines for combustion stability specifications and verification procedures for liquid propellant rocket engines[R]. Cpia Publication 655,1997.
  • 10Bormmee J. Reliability and safety approach for Vulcain engine[R]. IAF-88-228, 1988.

共引文献47

同被引文献85

引证文献9

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部