期刊文献+

基于改进CNN-GAP-SVM的船舶电力变换器快速故障诊断方法 被引量:9

Fast fault diagnosis method of marine electrical converter based on improved CNN-GAP-SVM algorithm
在线阅读 下载PDF
导出
摘要 近年来,基于深度学习技术的智能故障诊断方法在电力变换器领域得到了广泛研究。卷积神经网络(CNN)因其强大的特征提取能力而具备辨识早期微小故障的潜力。然而,现行的CNN算法因其模型结构过于复杂、训练参数量较多、诊断时间较长而不适用于电气故障的快速诊断。为此,提出了一种基于改进CNN-GAP-SVM的深度学习新算法,用于DC-DC变换器早期故障的快速诊断。首先,将原始的时间序列监测数据转变为二维特征图故障样本;其次,该方法设计了一个全局均值池化(GAP)层,用于代替传统CNN中2~3层的全连接层部分,以减少模型参数量;然后,采用非线性支持向量机(SVM)代替传统Softmax函数作为最终分类器,进一步提升诊断精度。实验表明:所提方法不仅将诊断准确率提升至100%,还提升了23%的诊断速度。通过与传统智能诊断方法相比较,证明了所提方法具有更快的诊断速度和更高的诊断准确率。 In recent years,intelligent fault diagnosis methods based on deep learning technology have become a research hotspot in the field of electrical converters.Convolutional Neural Network(CNN)has the potential to identify early-term micro faults because of its powerful feature extraction capabilities.The current Convolutional Neural Network(CNN)algorithms are not suitable for the rapid diagnosis of electrical faults due to its complicated model structure,excessive training parameters and long diagnosis waiting time.For this reason,a new deep learning algorithm based on improved CNN-GAP-SVM was proposed for the rapid diagnosis of DC-DC converter's early faults.The model input layer automatically transformed the raw 1D time-series monitoring data into 2D feature map training samples.To reduce model parameters,a Global Average Pooling Layer(GAP)was designed to improve the fully connected network structure of 2~3 layers in the traditional CNN.To further improve the diagnosis accuracy,a nonlinear Support Vector Machine(SVM)was used to replace the traditional Softmax function as the final classifier.Experiments showed that the proposed method could improve the diagnostic accuracy to 100%and the diagnosis speed by 23%.Compared with the traditional diagnosis methods,the proposed method had faster diagnosis speed and higher diagnosis accuracy.
作者 宫文峰 陈辉 WANG Danwei 张泽辉 高海波 GONG Wenfeng;CHEN Hui;WANG Danwei;ZHANG Zehui;GAO Haibo(Key Laboratory of High Performance Ship Technology of Ministry of Education in China, Wuhan University of Technology, Wuhan 430063, China;School of Marine Engineering,Beihai Campus, Guilin University of Electronic and Technology, Beihai 536000,China;School of Electrical and Electronic Engineering, Nanyang Technological University, Singapore 639798, Singapore)
出处 《计算机集成制造系统》 EI CSCD 北大核心 2022年第5期1370-1384,共15页 Computer Integrated Manufacturing Systems
基金 广西自然科学基金资助项目(2020GXNSFBA159058) 国家重点研发计划资助项目(2019YFE0104600) 国家自然科学基金资助项目(51579200,U1709215) 中央高校基本科研业务费专项资助优秀博士学位论文资助项目(2019-YB-023) 中国国家留学基金委博士联合培养资助项目(CSC201906950020)。
关键词 智能故障诊断 卷积神经网络 支持向量机 DC-DC变换器 开路故障 intelligent fault diagnosis convolutional neural network support vector machine DC-DC converter open-circuit fault
  • 相关文献

参考文献16

二级参考文献233

共引文献744

同被引文献58

引证文献9

二级引证文献34

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部