摘要
作为保障煤炭企业安全生产的重要设备,液压支架由于使用环境恶劣、支架负载较高且支架结构复杂,其故障发生频率较为频繁。针对这一现象,提出了基于贝叶斯网络和支持向量机的方法进行液压支架故障诊断分析,通过常见事故分析、因子分析法研究、基于贝叶斯网络和支持向量机的液压支架故障诊断方法研究、训练样本建立以及模型建立完成了液压支架故障诊断分析。通过实验对比发现,该模型故障诊断准确,符合实际使用要求。
As an important equipment to ensure the safe production of coal enterprises,hydraulic brackets have more frequent failures due to the harsh use environment,high bracket load and complex bracket structure.In response to this phenomenon,this paper proposes a method based on Bayesian network and support vector machine for hydraulic bracket fault diagnosis and analysis,through common accident analysis,factor analysis method research,hydraulic bracket fault diagnosis method research based on Bayesian network and support vector machine,training sample establishment and model establishment to complete the hydraulic bracket fault diagnosis and analysis,through experimental comparison,the model fault is found to be accurate and It is found that the model is accurate and meets the requirements of practical use.
作者
朱家宏
Zhu Jiahong(Jinneng Holding Coal Group,Datong Shanxi 037000)
出处
《机械管理开发》
2022年第5期141-142,145,共3页
Mechanical Management and Development
关键词
液压支架
故障诊断
因子分析法
训练样本
hydraulic bracket
fault diagnosis
factor analysis method
training sample