摘要
针对在役埋地管道可靠度评价的难题,建立了基于非接触磁特性参数的埋地管道可靠度马尔科夫链蒙特卡洛(Markov Chain Monte Carlo,MCMC)定量评价模型。试验材料为L245N钢管试件,预制有不同尺寸缺陷,对不同内压下埋地管件进行非接触磁记忆检测,并定量研究试验中缺陷变量与所获非接触磁特性参数之间的相关性,试验表明磁特性参数ΔH(y)和k(x,y)可分别敏感地反映并表征缺陷深度d、缺陷长度L的变化规律,建立了不同压力下ΔH(y)-d和k(x,y)-L非线性回归函数,经优化修正后的最大误差分别为6.07%和8.79%。进一步结合Modified B31G评价标准,在蒙特卡洛(Monte Carlo,MC)法基础上,引入能够反映管道损伤动态时变性的马尔科夫链,建立了基于非接触磁特性参数的埋地管道可靠度(MCMC)定量评价模型。通过算法对比与现场试验,验证了模型的有效性,为在实际工程中、不开挖条件下对埋地管道进行可靠度定量评价,提供了一种新的方法。
For the difficulties of reliability evaluation of buried pipeline,a Markov Chain Monte Carlo(MCMC)quantitative reliability model of buried pipeline based on non-contact magnetic characteristic parameters was established.The experimental material was tubular Steel L245N specimen prefabricated with defects of different sizes.Non-contact MMM testing experiments of the buried pipeline were carried out under different internal pressures.The correlation between defect variables and non-contact magnetic characteristic parameters was obtained in the experiments.The experiments show that the magnetic characteristic parametersΔH(y)and k(x,y)can sensitively reflect and characterize the variation patterns of the defect depth d,defect length L,respectively,thus the nonlinear optimized regression functions ofΔH(y)-d and k(x,y)-L are established under different pressures,of which the max error is 6.07%and 8.79%,respectively.Furthermore,in combination with Modified B31G evaluation criteria,and based on the Monte Carlo method,a Markov Chain which can reflect the dynamic time-varying nature of pipe damage was introduced.A MCMC quantitative reliability model of buried pipeline based on non-contact magnetic characteristic parameters was established.Through algorithm comparison and field tests,the validity of the model was verified,which provides a new method to quantitatively evaluate the reliability of in-service buried pipelines under non-excavation conditions in practical engineering.
作者
邢海燕
王松弘泽
孙晓军
段成凯
刘传
弋鸣
刘伟男
XING Haiyan;WANG Songhongze;SUN Xiaojun;DUAN Chengkai;LIU Chuan;YI Ming;LIU Weinan(School of Mechanical Science and Engineering,Northeast Petroleum University,Daqing 163318,China;College of Power and Energy Engineering,Harbin Engineering University,Harbin 150001,China)
出处
《压力容器》
北大核心
2022年第4期42-51,共10页
Pressure Vessel Technology
基金
黑龙江省自然科学基金联合引导项目(LH2019A004)
国家自然科学基金资助项目(11272084)。