期刊文献+

基于自适应无迹卡尔曼滤波的四旋翼无人机姿态解算 被引量:14

Attitude Calculation of Quadrotor UAV Based on Adaptive Unscented Kalman Filter
在线阅读 下载PDF
导出
摘要 无人机在航姿模式下飞行时,姿态角误差波动较大,根据磁力计、加速度计和陀螺仪的互补性特点,提出一种自适应无迹卡尔曼滤波(AUKF)算法对MEMS传感器数据进行优化求解:以姿态四元数和陀螺漂移为状态量,加速度计和磁力计测量值为观测量,采用梯度下降法优化无迹卡尔曼滤波的关键参数,即过程噪声协方差,以提高四旋翼无人机姿态解算精度。对实际飞行数据的分析表明:分别与常规卡尔曼滤波和传统无迹卡尔曼滤波算法相比,该方法精度最高,可确保小型无人机在各种情况下飞行的稳定性。 When the UAV flies in the attitude modethe attitude angle error fluctuates greatly.According to the complementary characteristics of magnetometeraccelerometer and gyroscopean Adaptive Unscented Kalman Filter(AUKF)algorithm is proposed to optimize the MEMS sensor data.The attitude quaternion and gyro drift are taken as state variablesand the output of accelerator and magnetometer is taken as measurement variables.The gradient descent algorithm is used to optimize the key parameter of Unscented Kalman Filternamelyprocess noise covarianceso as to improve the accuracy of attitude calculation.The analysis of actual flight data shows that the proposed method has the highest accuracy compared with conventional Kalman filter and traditional unscented Kalman filterand can ensure flight stability of small UAVs in various situations.
作者 刘康安 张伟伟 肖永超 叶沐 LIU Kang'an;ZHANG Weiwei;XIAO Yongchao;YE Mu(Shanghai University of Engineering Science,Shanghai 201000,China;Tsinghua University,Beijing 100000,China)
出处 《电光与控制》 CSCD 北大核心 2022年第7期126-131,共6页 Electronics Optics & Control
关键词 无人机 无迹卡尔曼滤波 姿态估计 数据融合 UAV Unscented Kalman Filter(UKF) attitude estimation data fusion
  • 相关文献

参考文献5

二级参考文献29

  • 1Roetenberg,D,Luinge,HJ,Baten,CT,Veltink,PH.Compensation of magnetic disturbances improves inertial and magnetic sensing of human body segment orientation[].IEEE Trans Neural Syst Rehabil Eng.2005
  • 2Veltink,P. H.,Slycke,P.,Hemssems,J.,Buschman,R.,Bulstra,G.,Hermens,H.Three dimensional inertial sensing of foot movements for automatic tuning of a two-channel implantable drop-foot stimulator[].Medical Engineering and Physics.2003
  • 3Rehbinder H,Hu Xiaoming.Drift-free attitude estimation foraccelerated rigid bodies[].Proceedings-IEEE In-ternational Conference on Robotics and Automation.2001
  • 4Yun Xiaoping,Bachmann E R,McGhee R B.A simplified quaternion-based algorithm for orientation estimation from earth gravity and magnetic field measurements[].IEEE Transactions on Instrumentation and Measurement.2008
  • 5Jeff B,Defense C,Dale A.Indoor navigation with foot-mounted strapdown inertial navigation and magnetic sensors[].Wireless Communications.2011
  • 6Fourati H,Manamanni N,Afilal L,et al.A nonlinearfiltering approach for the attitude and dynamic bodyacceleration estimation based on inertial and magneticsensors:Bio-logging application[].IEEE Sensors Journal.2011
  • 7Yun X,Lizarraga M,Bachmann E R,et al.An improvedquaternion-based Kalman filter for real-time tracking of rigidbody orientation[].Proceedings of the IEEE InternationalConference on Intelligent Robots and Systems.2003
  • 8Harms H,Amft O,Winkler R,Schumm J,et al.ETHOS:Miniature Orientation Sensor for Wearable Human MotionAnalysis[].Proceedings of IEEE Sensors conference.2010
  • 9Suh Y S.Orientation estimation using aquaternion-basedindirect Kalman filter with adaptive estimation of externalacceleration[].IEEE TransInstrumentation andMeasurement.2010
  • 10Ren H,Kazanzides P.Investigation of attitude tracking usingan integrated inertial and magnetic navigation system forhand-held surgical instruments[].IEEE/ASME Transactionson Mechatronics.2010

共引文献118

同被引文献161

引证文献14

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部