期刊文献+

基于改进MNPSO算法的微电网经济运行优化研究 被引量:1

Research on an Improved Particle Swarm Algorithm with Many Normal Random Number Disturbances
在线阅读 下载PDF
导出
摘要 为研究各种改进的粒子群优化算法对微电网的经济运行优化,通过构建微电网经济运行优化模型,用多个正态随机数扰动粒子群算法速度和位置的演进方向,对比了改进粒子群算法的收敛性和不同应用环境下的优化性能,采用实际简单协调风光储的微电网算例进行验证分析,证明了改进算法的优化效果并验证了优化微电网经济运行的科学性。 This paper constructed an optimized model of the economic operation of the microgrid to optimize the microgrid for studying different improved particle swarm optimization.It employed many normal random numbers to disturb the speed and evaluation direction of the particle swarm optimization.In addition,it compared the astringency of the evolutional particle swarm optimization and the optimal performance under diverse application environments.This paper takes the example of the solar energy storage microgrid to do the analysis.It verifies the improved effect of the evolutional algorithm.Moreover,it validates the scientificity of optimizing the economic operation of the microgrid.
作者 柳勇 杨国华 吴宣儒 刘煜 李思维 LIU Yong;YANG Guo-hua;WU Xuan-ru;LIU Yu;LI Si-wei(School of Physics and Electronic-Electrical Engineering,Ningxia University,Yinchuan 750021,China)
出处 《电工电气》 2022年第7期14-21,49,共9页 Electrotechnics Electric
关键词 微电网 改进粒子群优化算法 正态随机数 优化性能 microgrid improved particle swarm optimization algorithm normal random number optimized performance
  • 相关文献

参考文献12

二级参考文献137

  • 1王紫雷.基于复杂网络理论的受端电网分层分区[J].电网与清洁能源,2015,31(6):69-74. 被引量:7
  • 2鲁宗相,王彩霞,闵勇,周双喜,吕金祥,王云波.微电网研究综述[J].电力系统自动化,2007,31(19):100-107. 被引量:939
  • 3CHEN Changsong, DUAN Shanxu, TAO Cai. Op- timal Allocation and Economic Analysis of Energy Storage System in Microgrids [J]. IEEE transactions on power electronics, 2011, 26 (10) : 2762 - 2773.
  • 4Sortomme E, E1-Sharkawi M A. Optimal Power Flow for a System of Microgrids with Controllable Loads and Battery Storage [A]. Power Systems Conference and Exposition of IEEE/PES [C], Seat- tle, WA, USA, 2009.
  • 5Mohamed Faisal A, Koivo Heikki N. Online Man agement of MicroGrid with Battery Storage Using Multiobjective Optimization [ A ]. POWERENG 2007[C]. Setubal, Portugal, 2007.
  • 6Yang X S. A new metaheuristic bat- inspired algorithm [A]. Gonzalez J R, Pelta D A. Nature Inspired Cooperatiee Strategies for Optimization [C] Berlin: Springer, 2010: 65-74.
  • 7Yang X S. Bat algorithm for multi--objective optimization [J]. Int. J. Bio--InspiredComputation, 2011, 3 (5): 267-274.
  • 8Yang X S, A H Gandomi. Bat algorithm; a novel approach for global engineering optimization [J]. Engineering Computation, 2012, 29 (5): 267-289.
  • 9Mishra S, Shaw K, Mishra D. A new metaheuristic classification approach for microarray data [J]. Procedia Technology, 2012, 4 (1): 802 - 806.
  • 10Xie J, Zhou Y Q, Chen H. A novel bat algorithm based on dif ferentiai operator and Levy flights trajectory [J]. Computational Intelligence and Neuroscience, 2013, 453812: 1 - 13.

共引文献79

同被引文献6

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部