期刊文献+

一种基于改进FAST角点检测的LK光流算法 被引量:1

LK optical flow algorithm based on improved FAST corner point detection
在线阅读 下载PDF
导出
摘要 针对传统LK光流法无法有效跟踪快速移动的目标,跟踪时存在特征点选取实时性和准确性不足的问题,提出一种结合改进FAST角点检测的LK光流算法。应用改进后的FAST角点检测提取出的角点作为候选特征点,通过设定筛选方案从中选取具有较高对比度的特征点作为目标特征点,结合图像金字塔分层,最终使用LK光流法对其进行跟踪。改进FAST角点检测能够更快速地提取出最强的灰度变化角点,使得子像素计算准确性得以提高并且减少了提取特征点的时间。引入图像分层缩放源图像,能够使算法稳定跟踪快速运动的目标。实验结果从运动目标检测所需时间、特征点的数量、每秒处理的视频帧数以及x轴和y轴方向运动误差等方面进行分析比较,证明所提出的改进算法运行速度快,能够快速且准确地跟踪动态目标。 The traditional LK(Lucas⁃Kanade)optical flow method fails to track fast⁃moving targets.In addition,its real⁃time performance and accuracy of the feature point selection is unsatisfactory in the process of tracking.Therefore,an LK optical flow algorithm based on the improved FAST corner point detection is proposed.The corner points extracted by the improved FAST corner point detection are used as the candidate feature points.The feature points with high contrast are selected as the target feature points by setting a screening scheme.In combination with the pyramidal image layering,the LK optical flow algorithm is used to track the targets,finally.The improved FAST corner point detection can extract the strongest grayscale variation corner points more quickly,which improves the accuracy of sub⁃pixel calculation and reduces the time for extracting feature points.The introduction of image hierarchical scaling source images can make the algorithm track fast⁃moving targets stably.The experimental results,including the time required for motion target detection,the number of feature points and the number of video frames processed per second,are analyzed and contrasted,as well as the motion error in the directions of x⁃axis and y⁃axis.It has been proved that the proposed improved algorithm has fast operation speed and can track the dynamic targets rapidly and accurately.
作者 朱代先 刁弘伟 刘树林 ZHU Daixian;DIAO Hongwei;LIU Shulin(College of Communication and Information Engineering,Xi’an University of Science and Technology,Xi’an 710054,China;College of Electrical and Control Engineering,Xi’an University of Science and Technology,Xi’an 710054,China)
出处 《现代电子技术》 2022年第15期45-50,共6页 Modern Electronics Technique
基金 陕西省重点研发计划(2021GY⁃338)。
关键词 LK光流法 FAST角点检测 目标跟踪 动态目标 金字塔图像分层 迭代 特征点 LK optical flow algorithm FAST corner point detection target tracking dynamic target pyramidal image layering iteration feature point
  • 相关文献

参考文献11

二级参考文献78

  • 1Brown M,Lowe D G.Automatic Panoramic Image Stitching Using Invariant Features[J].International Journal of Computer Vision,2007,74(1):59-73.
  • 2ZitováB,Flusser J.Image Registration Methods:A Survey[J].Image and Vision Computing,2003,21(11):977-1000.
  • 3Lowe D G.Object Recognition from Local Scale-invariant Features[C]//Proceedings of the 7th IEEE International Conference on Computer Vision.Washington D.C.,USA:IEEE Press,1999:1150-1157.
  • 4Lowe D G.Distinctive Image Features from Scaleinvariant Keypoints[J].International Journal of Computer Vision,2004,60(2):91-110.
  • 5Bay H,Ess A,Tuytelaars T,et al.SURF:Speeded-up Robust Features[J].Computer Vision and Image Understanding,2008,110(3):346-359.
  • 6Rosten E,Porter R,Drummond T.Faster and Better:A Machine Learning Approach to Corner Detection[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2010,32(1):105-119.
  • 7Lindeberg T.Scale-space Theory:A Basic Tool for Analysing Structures at Different Scales[J].Journal of Applied Statistics,1994,21(2):224-270.
  • 8Muja M,Lowe D G.Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration[C]//Proceedings of the 4th International Conference on Computer Vision Theory and Application.Lisboa,Portugal:INSTICC Press,2009:331-340.
  • 9Hans P M.Towards automatic visual obstacle avoidance[C]//Proceedings of the 5th international joint conference on Artificial intelligence,1977:584-584.
  • 10Harris C,Stephens M.A combined corner and edge detector[C]//Alvey vision conference,1988,15:50.

共引文献207

同被引文献16

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部