期刊文献+

基于低秩约束的熵加权多视角模糊聚类算法 被引量:9

Entropy-weighting Multi-view Fuzzy C-means With Low Rank Constraint
在线阅读 下载PDF
导出
摘要 如何有效挖掘多视角数据内部的一致性以及差异性是构建多视角模糊聚类算法的两个重要问题.本文在Co-FKM算法框架上,提出了基于低秩约束的熵加权多视角模糊聚类算法(Entropy-weighting multi-view fuzzy C-means with low rank constraint,LR-MVEWFCM).一方面,从视角之间的一致性出发,引入核范数对多个视角之间的模糊隶属度矩阵进行低秩约束;另一方面,基于香农熵理论引入视角权重自适应调整策略,使算法根据各视角的重要程度来处理视角间的差异性.本文使用交替方向乘子法(Alternating direction method of multipliers,ADMM)进行目标函数的优化.最后,人工模拟数据集和UCI(University of California Irvine)数据集上进行的实验结果验证了该方法的有效性. Effective mining both internal consistency and diversity of multi-view data is important to develop multiview fuzzy clustering algorithms.In this paper,we propose a novel multi-view fuzzy clustering algorithm called entropy-weighting multi-view fuzzy c-means with low-rank constraint(LR-MVEWFCM).On the one hand,we introduce the nuclear norm as the low-rank constraint of the fuzzy membership matrix.On the other hand,the adaptive adjustment strategy of view weight is introduced to control the differences among views according to the importance of each view.The learning criterion can be optimized by the alternating direction method of multipliers(ADMM).Experimental results on both artificial and UCI(University of California Irvine)datasets show the effectiveness of the proposed method.
作者 张嘉旭 王骏 张春香 林得富 周塔 王士同 ZHANG Jia-Xu;WANG Jun;ZHANG Chun-Xiang;LIN De-Fu;ZHOU Ta;WANG Shi-Tong(School of Digital Media,Jiangnan University,Wuxi 214122;School of Communication and Information Engineering,Shanghai University,Shanghai 200444;School of Electronic Information,Jiangsu University of Science and Technology,Zhenjiang 212100)
出处 《自动化学报》 EI CAS CSCD 北大核心 2022年第7期1760-1770,共11页 Acta Automatica Sinica
基金 国家自然科学基金(61772239) 江苏省自然科学基金(BK20181339)资助。
关键词 多视角模糊聚类 香农熵 低秩约束 核范数 交替方向乘子法 Multi-view fuzzy clustering Shannon entropy low-rank constraint nuclear norm alternating direction method of multipliers(ADMM)
  • 相关文献

参考文献1

二级参考文献70

  • 1邓赵红,王士同.鲁棒性的模糊聚类神经网络[J].软件学报,2005,16(8):1415-1422. 被引量:11
  • 2李洁,高新波,焦李成.基于特征加权的模糊聚类新算法[J].电子学报,2006,34(1):89-92. 被引量:114
  • 3王丽娟,关守义,王晓龙,王熙照.基于属性权重的Fuzzy C Mean算法[J].计算机学报,2006,29(10):1797-1803. 被引量:46
  • 4Xu R,Wunsch D. Survey of clustering algorithms[J]. IEEETrans on Neural Networks, 2005, 16(3): 645-678.
  • 5Jain A K, Murty M N, Flynn P J. Data clustering: Areview[J]. ACM Computing Surveys, 1999, 31(3): 264-323.
  • 6Jain A K. Data clustering: 50 years beyond κ-means[J].Pattern Recognition Letters, 2010, 31(8): 651-666.
  • 7Goldberger J, Tassa T. A hierarchical clustering algorithmbased on the Hungarian method[J]. Pattern RecognitionLetters, 2008, 29(1): 1632-1638.
  • 8Kumar P, Krishna P R, Bapi R S, et al. Rough clustering ofsequential data[J]. Data & Knowledge Engineering, 2007,3(2): 183-199.
  • 9Cilibrasi R L, Vitányi P MB. A fast quartet tree heuristicfor hierarchical clustering[J]. Pattern Recognition, 2011,44(3): 662-677.
  • 10Hathaway R J, Hu Y. Density-weighted fuzzy κ-meansclustering[J]. IEEE Trans on Fuzzy Systems, 2009, 17(1):243-252.

共引文献195

同被引文献52

引证文献9

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部