摘要
基于电推系统的地球同步轨道(GEO)卫星需要利用霍尔推进器使其从地球同步转移轨道(GTO)推到GEO轨道,整个变轨时间段长达数月。在整个变轨过程中卫星具有姿态无法保持对地的特点,该特点将会减少卫星可测控时长。针对变轨段卫星姿态不确定减少可测控时长的问题,提出了一种在已有的轨道和姿态条件下,使用梯度下降算法寻找测控天线最优布局的方法,目的是使卫星获得最长的总可测控覆盖时长以及对中继星最长的可测控时长。结果显示通过改动天线布局可以显著地提升对地以及对中继星可测控覆盖时长,同时也能提升转移轨道关键时段对中继星可测控覆盖时长。与为天线增加转台与控制系统这类传统方法相比,该方法可以在不增加成本和质量的前提下,在一定程度上改善了电推卫星的可见性时长,对全电推卫星测控有指导意义。
The geostationary earth orbit(GEO) satellite based on electric propulsion is propelled by stationary plasma thruster from geostationary transfer orbit(GTO) to GEO,which can take several months.During orbit transfer period, the satellite has the characteristic of unfixed attitude to the ground, which may reduce the total TT&C coverage time.In order to solve the satellite tracing time reduced problem caused by unfixed attitude of electric propulsion satellite, a method is presented to find the optimal layout of TT & C antenna under the existing orbit and attitude conditions by adopting gradient descent algorithm, aiming at obtaining the longest total TT & C coverage time of earth stations and the longest coverage time of Tracking and Data Relay Satellite System(TDRSS).The results show that the coverage time can be prominently improved by optimizing the layout of TT & C antenna and the coverage time of key period of orbit transfer by TDRSS can also be improved through this method.Compared with traditional methods such as adding a turntable and a control system to the antenna, this method can improve the visible time of all-electric propulsion satellite to a certain extent without increasing cost and weight, which is instructive to TT&C system of all-electric propulsion satellite.
作者
卢元申
朱峪
王昊光
吴敏
张文
蒋桂忠
LU Yuan-shen;ZHU Yu;WANG Hao-guang;WU Min;ZHANG Wen;JIANG Gui-zhong(Shanghai Engineering Center for Microsatellites,Shanghai 201203,China;Innovation Research Institute of Microsatellite of Chinese Academy of Sciences,Shanghai 201203,China)
出处
《测控技术》
2022年第7期98-104,共7页
Measurement & Control Technology
基金
中国科学院重点部署项目(ZDRW-KT-2019-1-0201)。
关键词
电推系统
转移轨道
中继星测控
梯度下降法
electric propulsion system
orbit transfer
TDRSS
gradient descent algorithm