期刊文献+

Design and aligner-assisted fast fabrication of a microfluidic platform for quasi-3D cell studies on an elastic polymer 被引量:1

原文传递
导出
摘要 While most studies of mechanical stimulation of cells are focused on two-dimensional(2D)and three-dimensional(3D)systems,it is rare to study the effects of cyclic stretching on cells under a quasi-3D microenvironment as a linkage between 2D and 3D.Herein,we report a new method to prepare an elastic membrane with topographic microstructures and integrate the membrane into a microfluidic chip.The fabrication difficulty lay not only in the preparation of microstructures but also in the alignment and bonding of the patterned membrane to other layers.To resolve the problem,we designed and assembled a fast aligner that is cost-effective and convenient to operate.To enable quasi-3D microenvironment of cells,we fabricated polydimethylsiloxane(PDMS)microwell arrays(formed by micropillars of a few microns in diameter)with the microwell diameters close to the cell sizes.An appropriate plasma treatment was found to afford a coating-free approach to enable cell adhesion on PDMS.We examined three types of cells in 2D,quasi-3D,and 3D microenvironments;the cell adhesion results showed that quasi-3D cells behaved between 2D and 3D cells.We also constructed transgenic human mesenchymal stem cells(hMSCs);under cyclic stretching,the visualizable live hMSCs in microwells were found to orientate differently from in a 3D Matrigel matrix and migrate differently from on a 2D flat plate.This study not only provides valuable tools for microfabrication of a microfluidic device for cell studies,but also inspires further studies of the topological effects of biomaterials on cells.
出处 《Bioactive Materials》 SCIE 2022年第9期288-304,共17页 生物活性材料(英文)
基金 supported by the National Natural Science Foundation of China(grants no.51803032,21961160721,52130302,22175041).
  • 相关文献

参考文献11

二级参考文献36

共引文献71

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部