期刊文献+

基于MCP的非对称最小二乘估计 被引量:2

The Asymmetric Least Squares Estimator Based on Minimax Concave Penalty
原文传递
导出
摘要 作为一种流行的非凸惩罚,极小极大凹惩罚(MCP)在变量选择中被广泛使用.非对称最小二乘回归(ALS)区别于最小二乘回归,能够研究响应变量的整个条件分布.文章基于MCP惩罚,提出带有MCP惩罚的稀疏非对称最小二乘回归模型(MCP-ALS),并得到了相应估计量的性质.文章证明:首先,在一定的正则化条件下,当协变量维度固定时,诱导估计量具有Oracle性质.在高维模型中,当回归误差具有有限阶矩时,诱导估计量具有弱化Oracle性质.其次,通过采取不同的非对称权重值,文章提出的方法能够识别出引起异方差的协变量.数值模拟表明,文章提出的方法在变量选择上有优良的表现,并且能有效检测异方差.最后,将所提方法应用于糖尿病数据集中,实例分析表明,所提方法在实现变量选择的同时,能够挖掘解释变量与响应变量之间的潜在关系,以期对糖尿病人病情的预测和控制提供借鉴. As a promising nonconvex penalty,the minimax concave penalty(MCP)has been a widely used technique in variable selection.Asymmetric least squares regression is proposed as an alternative regression to investigate the whole conditional distribution of the response variable.In this paper,we investigate the minimax concave penalty in sparse asymmetric least squares regression models(MCP-ALS).Under some regular conditions,we prove that the MCP-ALS estimator enjoys oracle property when the covariate dimension is fixed.In high dimensional model,we obtain the weaken oracle property of the estimator when the error has finite moments.As a by-product,our proposed method is able to detect heteroscedasticity by taking different asymmetric weight values.The results from simulation show that the proposed method has good performance on variable selection and can detect heteroscedasticity efficiently.Finally,the proposed method is applied to the diabetes dataset.The real analysis shows that the proposed method can mine the potential relationship between explanatory variables and response variables while realizing variable selection to provide a reference for the prediction and control of the condition of diabetic patients.
作者 张晓琴 卫夏利 米子川 李顺勇 ZHANG Xiaoqin;WEI Xiali;MI Zichuan;LI Shunyong(School of Statistics,Shanxi University of Finance and Economics,Taiyuan 030006;School of Economics and Management,Shanxi University,Taiyuan 030006;School of Mathematical Sciences,Shanxi University,Taiyuan 030006)
出处 《系统科学与数学》 CSCD 北大核心 2022年第5期1344-1360,共17页 Journal of Systems Science and Mathematical Sciences
基金 国家社会科学基金项目(17BTJ010) 山西省自然科学基金(201901D111320)资助课题。
关键词 非对称最小二乘回归 MCP 异方差 变量选择 高维数据 ALS regression minimax concave penalty heteroscedasticity variable selection high dimensional data
  • 相关文献

参考文献12

二级参考文献50

  • 1钱胜,王文霞,王瑶.232名河南省农民工心理健康状况及影响因素[J].中国健康心理学杂志,2008,16(4):459-461. 被引量:38
  • 2张荷观.基于分组的异方差检验和两阶段估计[J].数量经济技术经济研究,2006,23(1):129-137. 被引量:14
  • 3刘乐平,张龙,蔡正高.多重假设检验及其在经济计量中的应用[J].统计研究,2007,24(4):26-30. 被引量:7
  • 4Koenker R,Bassett G.Regression Quantilez[J].Econometrica,1978, (46).
  • 5Koenker R,Bassett G.Robust Tests for Heteroscedasticity Based on Regression Quantiles[J]. Econometrica,1982,(50).
  • 6GujaratiD.N,张涛.计量经济学精要[M】.北京:机械工业出版社,2000.
  • 7Hidreth C,Houck J.Some estiamtors for a linear model with random coefficients.Journal of the American Statistical Association,1968,63:584-595.
  • 8Goldfeld S,Quandt R.Nonlinear Methods in Econometrics.Amsterdam:North-Holland.1972.
  • 9Breusch T,Pagan A.A simple test for heteroskedasticity and random coefficients variation.Econometrica,1979,47:1287-1294.
  • 10White H.A heteroskedasticity-consistent covariance matrix estimator and a direct test for heteroskedasticity.Econometrica,1980,48:817-838.

共引文献39

同被引文献13

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部