期刊文献+

Morphological Engineering of Sensing Materials for Flexible Pressure Sensors and Artificial Intelligence Applications 被引量:19

在线阅读 下载PDF
导出
摘要 As an indispensable branch of wearable electronics,flexible pressure sensors are gaining tremendous attention due to their extensive applications in health monitoring,human-machine interaction,artificial intelligence,the internet of things,and other fields.In recent years,highly flexible and wearable pressure sensors have been developed using various materials/structures and transduction mechanisms.Morphological engineering of sensing materials at the nanometer and micrometer scales is crucial to obtaining superior sensor performance.This review focuses on the rapid development of morphological engineering technologies for flexible pressure sensors.We discuss different architectures and morphological designs of sensing materials to achieve high performance,including high sensitivity,broad working range,stable sensing,low hysteresis,high transparency,and directional or selective sensing.Additionally,the general fabrication techniques are summarized,including self-assembly,patterning,and auxiliary synthesis methods.Furthermore,we present the emerging applications of high-performing microengineered pressure sensors in healthcare,smart homes,digital sports,security monitoring,and machine learning-enabled computational sensing platform.Finally,the potential challenges and prospects for the future developments of pressure sensors are discussed comprehensively.
出处 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第9期1-48,共48页 纳微快报(英文版)
基金 supported by the National Natural Science Foundation of China(52003253 and 52103308) the China Postdoctoral Science Foundation(2020M672283).
  • 相关文献

参考文献9

二级参考文献48

  • 1Wang, Z. L. Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 2008, 18, 3553-3567.
  • 2Wang, Z. L.; Zhu, G.; Yang, Y.; Wang, S. H.; Pan, C. F. Progress in nanogenerators for portable electronics. Mater. Today 2012, 15, 532-543.
  • 3Wang, Z. L. Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors. ACSNano 2013, 7, 9533-9557.
  • 4Takei, K.; Takahashi, T.; Ho, J. C.; Ko, H.; Gillies, A. G.; Leu, P. W.; Fearing, R. S.; Javey, A. Nanowire active- matrix circuitry for low-voltage macroscale artificial skin. Nat. Mater. 2010, 9, 821-826.
  • 5Kim, D. H.; Lu, N. S.; Ma, R.; Kim, Y. S., Kim, R. H., Wang, S. D.; Wu, J.; Won, S. M.; Tao, H., Islam, A. et al. Epidermal electronics. Science 2011, 333, 838-843.
  • 6Sekitani, T.; Yokota, T.; Zschieschang, U.; Klauk, H.; Bauer, S.; Takeuchi, K.; Takamiya, M.; Sakurai, T.; Someya, T. Organic nonvolatile memory transistors for flexible sensor arrays. Science 2009, 326, 1516-1519.
  • 7Someya, T.; Sekitani, T.; lba, S.; Kato, Y.; Kawaguchi, H.; Sakurai, T. A large-area, flexible pressure sensor matrix with organic field-effect transistors for artificial skin applications. P. Natl. Acad. Sci. USA 2004, 101, 9966-9970.
  • 8Donelan, J. M.; Li, Q.; Naing, V.; Hoffer, J. A.; Weber, D. J.; Kuo, A. D. Biomechanical energy harvesting: Generating electricity during walking with minimal user effort. Science 2008, 319, 807-810.
  • 9Krupenkin, T.; Taylor, J. A. Reverse electrowetting as a new approach to high-power energy harvesting. Nat. Commun. 2011, 2, 448.
  • 10Qi, Y.; Kim, J.; Nguyen, T. D.; Lisko, B.; Purohit, P. K.; McAlpine, M. C. Enhanced piezoelectricity and stretchability in energy harvesting devices fabricated from buckled pzt ribbons. NanoLett. 2011, 11, 1331-1336.

共引文献112

同被引文献160

引证文献19

二级引证文献12

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部