摘要
This paper improves the algorithm of point cloud filtering and registration in 3D modeling,aiming for smaller sampling error and shorter processing time of point cloud data.Based on collaborative sampling among several Kinect devices,we analyze the deficiency of current filtering algorithm,and use a novel method of point cloud filtering.Meanwhile,we use Fast Point Feature Histogram(FPFH)algorithm for feature extraction and point cloud registration.Compared with the aligning process using Point Feature Histograms(PFH),it only takes 9min when the number of points is about 500,000,shortening the aligning time by 47.1%.To measure the accuracy of the registration,we propose an algorithm which calculates the average distance of the corresponding coincident parts of two point clouds,and we improve the accuracy to an average distance of 0.7mm.In the surface reconstruction section,we adopt Ball Pivoting algorithm for surface reconstruction,obtaining image with higher accuracy in a shorter time.