期刊文献+

Sustainable Energy Management with Traffic Prediction Strategy for Autonomous Vehicle Systems

在线阅读 下载PDF
导出
摘要 Recent advancements of the intelligent transportation system(ITS)provide an effective way of improving the overall efficiency of the energy management strategy(EMSs)for autonomous vehicles(AVs).The use of AVs possesses many advantages such as congestion control,accident prevention,and etc.However,energy management and traffic flow prediction(TFP)still remains a challenging problem in AVs.The complexity and uncertainties of driving situations adequately affect the outcome of the designed EMSs.In this view,this paper presents novel sustainable energy management with traffic flow prediction strategy(SEM-TPS)for AVs.The SEM-TPS technique applies type II fuzzy logic system(T2FLS)energy management scheme to accomplish the desired engine torque based on distinct parameters.In addition,the membership functions of the T2FLS scheme are chosen optimally using the barnacles mating optimizer(BMO).For accurate TFP,the bidirectional gated recurrent neural network(Bi-GRNN)model is used in AVs.A comprehensive experimental validation process is performed and the results are inspected with respect to several evaluation metrics.The experimental outcomes highlighted the supreme performance of the SEM-TPS technique over the recent state of art approaches.
出处 《Computers, Materials & Continua》 SCIE EI 2022年第8期3465-3479,共15页 计算机、材料和连续体(英文)
基金 This work was supported by Taif University Researchers Supporting Program(project number:TURSP-2020/195),Taif University,Saudi Arabia.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部