摘要
开展高压高速节流口的空化抑制方法研究是提升阀的寿命和可靠性的关键环节。针对高压高速节流口空化破坏严重的问题,提出了一种基于节流-分流耦合的空化抑制方法。该方法采用多级节流的方式,实现阀口压降的多级承担,有效减小阀口压力梯度并降低流速;通过在阀出口采取多排孔分流的方式,改善流线布局,减少流体冲击。以电磁卸荷阀为例,分析卸荷阀动态性能,获得高压高速节流口实际工况,开展高压高速工况下节流口流体仿真。仿真结果显示,相较多级节流方式和多孔分流方式,所提出的方法可显著改善流场的压力和流速分布,实现了阀口空化现象的有效抑制。
Studying the anti-cavitation performance of high-pressure and high-speed orifices is vital to improve the life and reliability of valves. Aiming at the serious problem of cavitation in high-pressure and high-speed orifices, this paper proposes a structure optimization method for cavitation resistance performance based on throttle-split coupling. In this method, the multi-stage throttling method is adopted to realize multi-stage commitment of valve port pressure drop, effectively reducing valve port pressure gradient and flow velocity. Besides, multi-row orifice diversion method is proposed and applied to improve the streamline. Taking the electro-hydraulic unloading valve as an example, the dynamic performance of the unloading valve is analyzed to obtain the actual operating conditions of the high-pressure and high-speed orifice, and the flow simulation of the orifice under the high-pressure and high-speed operating conditions is carried out. The simulation results show that, compared with the multi-stage throttling method and the porous split method, the proposed method can significantly improve the pressure and velocity distribution of the flow field and greatly enhance the anti-cavitation performance of the valve port.
作者
于瑞
韦文术
胡经文
卢海承
马思宇
郭宗凯
周华
杨华勇
YU Rui;WEI Wen-shu;HU Jing-wen;LU Hai-cheng;MA Si-yu;GUO Zong-kai;ZHOU Hua;YANG Hua-yong(State Key Laboratory of Fluid Power and Mechatronic Systems,Zhejiang University,Hangzhou,Zhejiang 310027;Beijing Tianma Intelligent Control Technology Co.,Ltd.,Beijing 100013)
出处
《液压与气动》
北大核心
2022年第9期63-69,共7页
Chinese Hydraulics & Pneumatics
基金
国家重点研发计划(2018YFB2001203)
国家自然科学基金(51890885)
中国煤炭科工科技创新创业基金(2019-TD-2-CXY005)。
关键词
节流口
高压高速
空化抑制
节流-分流耦合
结构优化
orifice
high pressure and high speed
anti-cavitation performance
throttling-split coupling
structural optimization