期刊文献+

A Numerical Study on the Weak Galerkin Method for the Helmholtz Equation 被引量:2

原文传递
导出
摘要 A weak Galerkin(WG)method is introduced and numerically tested for the Helmholtz equation.This method is flexible by using discontinuous piecewise polynomials and retains the mass conservation property.At the same time,the WG finite element formulation is symmetric and parameter free.Several test scenarios are designed for a numerical investigation on the accuracy,convergence,and robustness of the WG method in both inhomogeneous and homogeneous media over convex and non-convex domains.Challenging problems with high wave numbers are also examined.Our numerical experiments indicate that the weak Galerkin is a finite element technique that is easy to implement,and provides very accurate and robust numerical solutions for the Helmholtz problem with high wave numbers.
出处 《Communications in Computational Physics》 SCIE 2014年第5期1461-1479,共19页 计算物理通讯(英文)
基金 supported in part by National Science Foundation Grant DMS-1115097 supported in part by National Science Foundation Grants DMS-1016579 and DMS-1318898.
  • 相关文献

同被引文献1

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部