期刊文献+

基于储能利用的充换电站电池调度路径优化 被引量:3

Research on Battery Dispatching Path Optimization of Charging and Swapping Station Based on Energy Storage Utilization
在线阅读 下载PDF
导出
摘要 以电动汽车充换电服务为研究背景,通过计算调度车辆和用户车辆的充电损耗,并结合站点和电网间的储能共享,分析了时变路况下电池调度的路径优化问题。首先,提出了基于荷电状态和时速的调度行驶数学模型,并建立电池充电模型;然后,为精确计算充电损耗,考虑在时变功率下的电能损耗,提出了基于电池容量修正的电池损耗模型。此外,为实现储能利用,提出在充换电站与电网之间进行储能电池共享,从而建立了以充电损耗和共享收入为调度成本的目标函数。最后,在传统的站点流量和电池容量等约束下,又考虑了基于储能利用的站点电源功率约束,并采用遗传算法求解。实验结果表明,所提方法能有效减少调度过程中的充电损耗,研究成果为充换电站和电网之间的共享储能提供了理论指导。 Under the background of charging and swapping services of electric vehicles, the path optimization problem of dispatching battery under time-varying road conditions is analyzed by calculating the charging loss of dispatching vehicles, user vehicles, and the energy storage sharing of the stations. First, a mathematical model of dispatching driving based on the state of charge and speed is proposed. The battery charging model is constructed. Then, in order to accurately calculate the charging loss, the power loss under time-varying power is considered. Based on the correctional battery capacity, the battery loss model is proposed. Moreover, to realize the utilization of energy storage, the sharing energy storages between the charging and swapping station and the grid are proposed. Hence an objective function with the charging loss and the sharing revenue as the dispatching cost is established. Finally, based on energy storage utilization, under the traditional constraints of stations traffic and battery capacity, the constraints of stations power are considered. In addition, the genetic algorithm is used to solve the path optimization problem. The experimental results show that the method proposed in this paper can effectively` reduce the charging loss during the dispatching process. The research results provide theoretical guidance for the energy storage sharing between the charging and swapping station and the grid.
作者 金珈辉 刘永慧 苏庆堂 JIN Jia-hui;LIU Yong hui;SU Qing-tang(School of Electrical Engineering,Shanghai Dianji University,Shanghai 201306,China;School of Information and Electrical Engineering,Ludong University,Yantai 264025,China)
出处 《控制工程》 CSCD 北大核心 2022年第9期1658-1666,共9页 Control Engineering of China
基金 国家自然科学基金资助项目(61803253,61771231)。
关键词 充换电站 充电损耗 电池容量修正 储能利用 遗传算法 Charging and swapping station charging loss battery capacity correction energy storage utilization genetic algorithm
  • 相关文献

参考文献4

二级参考文献47

  • 1苏舒,孙近文,林湘宁,李咸善.电动汽车智能充电导航[J].中国电机工程学报,2013,33(S1):59-67. 被引量:41
  • 2张建勇,李军,郭耀煌.具有模糊预约时间的VRP混合遗传算法[J].管理科学学报,2005,8(3):64-71. 被引量:34
  • 3宋伟刚,张宏霞,佟玲.有时间窗约束非满载车辆调度问题的遗传算法[J].系统仿真学报,2005,17(11):2593-2597. 被引量:33
  • 4潘震东,唐加福,韩毅.带货物权重的车辆路径问题及遗传算法[J].管理科学学报,2007,10(3):23-29. 被引量:29
  • 5Kuby M, Lim S. The flow-refueling location problem for alternative-fuel vehicles [J]. Socio-Economic Planning Sciences, 2005, 39(2): 125-145.
  • 6Kuby M, Lim S. Heuristic algorithms for sitting alternative-fuel stations using the Flow-Refueling Location Model [J]. European Journal of Operational Research, 2010, 204(1): 51-61.
  • 7Wang Yingwei. An optimal location choice model for recreation-oriented scooter recharge stations [J]. Transportation Research Part D, 2007, 12(3): 231-237.
  • 8Wang Yingwei. Locating battery exchange stations to serve tourism transport: A note [J]. Transportation Research Part D, 2008, 13(3): 193-197.
  • 9Wang Yingwei, Chuah-Chih L. Locating road-vehicle refueling stations [J]. Transportation Research Part E, 2009, 45(5): 821-829.
  • 10Mak H Y, Rong Ying, Shen Z J M. Infrastructure planning for electric vehicles with battery swapping[J]. Management Science, 2013,59(7):1557-1575.

共引文献93

同被引文献37

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部