期刊文献+

基于深度学习的单帧图像超分辨率重建综述 被引量:18

A Review of Single Image Super-Resolution Reconstruction Based on Deep Learning
在线阅读 下载PDF
导出
摘要 图像超分辨率重建是计算机视觉中的基本图像处理技术之一,不仅可以提高图像分辨率改善图像质量,还可以辅助其他计算机视觉任务.近年来,随着人工智能浪潮的兴起,基于深度学习的图像超分辨率重建也取得了显著进展.本文在简述图像超分辨率重建方法的基础上,全面综述了基于深度学习的单帧图像超分辨率重建的技术架构及研究历程,包括数据集构建方式、网络模型基本框架以及用于图像质量评估的主、客观评价指标,重点介绍了根据网络结构及图像重建效果划分的基于卷积神经网络的方法、基于生成对抗网络的方法以及基于Transformer的方法,并对相关网络模型加以评述和对比,最后依据网络模型和超分辨率重建挑战赛相关内容,展望了图像超分辨率重建未来的发展趋势. Image super-resolution reconstruction is one of the basic image processing techniques in computer vision,which can not only improve image resolution and image quality,but also assist other computer vision tasks.In recent years,with the rise of artificial intelligence,deep-learning-based image super-resolution reconstruction has also made remarkable progress.Based on a brief description of the image super-resolution reconstruction methodology,this paper comprehensive⁃ly reviews the technical architecture and research process of deep-learning-based single image super-resolution reconstruc⁃tion,including the method of datasets construction,the basic framework of the network model,the subjective and objective evaluation metrics for image quality evaluation.The methods based on convolutional neural networks,generative adversari⁃al networks and Transformer,which are divided according to network structure and image reconstruction effect are mainly introduced,and related network models are reviewed and compared.Finally,the future development trend of image superresolution reconstruction is prospected according to the related content of network model and super-resolution reconstruc⁃tion challenges.
作者 吴靖 叶晓晶 黄峰 陈丽琼 王志锋 刘文犀 WU Jing;YE Xiao-jing;HUANG Feng;CHEN Li-qiong;WANG Zhi-feng;LIU Wen-xi(School of Mechanical Engineering and Automation,Fuzhou University,Fuzhou,Fujian 350116,China;Advanced Technology Innovation Institute,Fuzhou University,Fuzhou,Fujian 350116,China;College of Computer and Data Science,Fuzhou University,Fuzhou,Fujian 350116,China)
出处 《电子学报》 EI CAS CSCD 北大核心 2022年第9期2265-2294,共30页 Acta Electronica Sinica
基金 国家自然科学基金(No.62072110)。
关键词 超分辨率重建 深度学习 单帧图像 卷积神经网络 生成对抗网络 TRANSFORMER 挑战赛 super-resolution reconstruction deep learning single image convolutional neural network generative adversarial network transformer challenges
  • 相关文献

参考文献18

二级参考文献118

  • 1南方哲,钱育蓉,行艳妮,赵京霞.基于深度学习的单图像超分辨率重建研究综述[J].计算机应用研究,2020,37(2):321-326. 被引量:24
  • 2左其亭,高峰.水文时间序列周期叠加预测模型及3种改进模型[J].郑州大学学报(工学版),2004,25(4):67-73. 被引量:13
  • 3王文,马骏.若干水文预报方法综述[J].水利水电科技进展,2005,25(1):56-60. 被引量:83
  • 4韩玉兵,陈小蔷,吴乐南.一种视频序列的超分辨率重建算法[J].电子学报,2005,33(1):126-130. 被引量:8
  • 5Tsai R Y, Huang T S. Multiframe image restoration and registration, in Advances ill Computer Vision and Image Processing: JAI Press Inc., 1984: 317-339.
  • 6Kim S P, Bose N K, Valenzuela H M. Recursive reconstruction of high resolution image from noisy undersampled multiframes[J]. IEEE Trans. Acoust. Speech, Signal Processing, 1990, 38:1013-1027.
  • 7Bose N K, Kim H C, Valenzuela H M. Reeursive implementation of total least squares algorithm fbr image reconstruction from noisy, undersampled multiframes. Acoustics, Speech and Signal Processing, Minneapolis[C]//IEEE 1993, pp. 269-272.
  • 8Rhee S H, Kang M G. Discrete cosine transform based regularized high-resolution image reconstruction algorithm. Opt. Eng., 1999, 38(8): 1348-1356.
  • 9John M. Wiltse, John L. Miller. Imagery improvements in staring infrared imagers by employing subpixel microscan[J]. Optical Engineering, 2005,44(5):056401-056409.
  • 10Kim S P, Bose N K. Reconstruction of 2-d bandlimited discrete signals from nonunitbrm samples. Radar and Signal Processing[J]. IEE Proceedings Part F, 1990, 137(3):197-204.

共引文献480

同被引文献121

引证文献18

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部