期刊文献+

基于交互多模型粒子滤波的污水毒素浓度估计

Estimation of Wastewater Toxin Concentration Based on Interactive Multi-model Particle Filter
在线阅读 下载PDF
导出
摘要 为了更准确地描述各随机因素干扰下细胞毒性过程的动态,结合细胞毒性的基本模型构建了细胞毒性随机混杂模型。基于所建立的模型,将细胞增殖的动态作为评估污水处理过程出水质量的间接指标,利用交互多模型粒子滤波算法提出了一种污水处理过程出水毒素浓度的早期估计方法。交互多模型粒子滤波在过程模式随机变化的情况下可以获得良好的估计效果,同时在运行过程中,采用粒子的加权交互来解决所需粒子数随时间指数增长问题,保证估计速度的同时又具有较高的精确性。不仅能够实时在线进行毒素浓度估计,而且避免了采用高效液相色谱法和液相色谱质谱法对主要毒物浓度的离线测定所需要的高昂成本,可以作为传统化学分析方法的一种高效、经济的补充方法,用于污水处理质量的监测和预警。 Combined with the basic model of cytotoxicity,a stochastic hybrid model of cytotoxicity is constructed,which can better describe the dynamics of the cytotoxic process under various uncertainties.Based on the constructed model,the dynamics of cell proliferation is used as an indirect indicator to evaluate the effluent quality of the wastewater treatment process,and an early estimation method of the effluent toxin concentration of the wastewater treatment process is proposed by using the interactive multi-model particle filter algorithm.The interactive multi-model particle filter can obtain satisfying estimation results when the system mode changes randomly.In the process of operation,the weighted interaction of particles is used to solve the problem of exponential growth in the number of particles required over time,while ensures the estimation speed and accuracy.The proposed scheme not only provides the online estimate of the toxin concentration in real time,but also avoids the high cost of high performance liquid chromatography and liquid chromatography mass spectrometry.It can be used as a cost-effective supplement to traditional chemical analysis methods for wastewater quality monitoring and early warning.
作者 赵珂 赵顺毅 刘飞 ZHAO Ke;ZHAO Shun-yi;LIU Fei(Key Laboratory of Advanced Process Control for Light Industry,Ministry of Education,Wuxi214122,China;Institute of Automation,Jiangnan University,Wuxi214122,China)
出处 《控制工程》 CSCD 北大核心 2022年第10期1758-1767,共10页 Control Engineering of China
基金 国家自然科学基金资助项目(61833007)。
关键词 粒子滤波 交互多模型 状态估计 细胞毒性 早期预警 Particle filter interactive multi-model state estimation cytotoxicity early warning
  • 相关文献

参考文献2

二级参考文献8

  • 1Lee D S, Jeon C O, Park J M, et al. Hybrid Neural Network Modeling of a Full-scale Industrial Wastewater Treatment Process [ J ]. Biotecbnology and Bioengineering ,2002,78 ( 6 ) :670 - 682.
  • 2Lee D S, Park J M, Vanrolleghem P A. Adaptive Multiscale Principal Component Analysis for On-line Monitoring of a Sequencing Batch Reactor[ J]. J of Biotechnol. ,2005,116 (2) : 195 - 210.
  • 3Lee D S, Vanrolleghem P A. Monitoring of a Sequencing Batch Reactor Using Adaptive Multiblock Principal Component Analysis [ J ]. Biotechnology Bioeng,2003,82(4) :489 -497.
  • 4MacGregor J F ,Kourti T. Statistical Process Control of Multivariate Processes [ J ]. Control Eng. Practice, 1995,3 ( 3 ) :403 - 414.
  • 5Wise B M, Gallagher N B. The Process Chemomettics Approach to Process Monitoring and Fault Detection [ J ]. J Proc Control, 1996,6 ( 6 ) : 329 - 348.
  • 6Geladi P, Kowalski B R. Partial Least-Squares Regression [ J ]. Anal Chim Acta, 1986,185 : 1 - 17.
  • 7Qin s J, McAvoy T J. Nonlinear PLS Modeling Using Neural Network [ J ]. Computer Chem. Eng. , 1992,16(4) : 379 -391.
  • 8Dae Sung Lee, Min Woo Lee, Seung Han Woo, et al. Nonlinear Dynamic Partial Least Squares Modeling of a Full-scale Biological Wastewater Treatment Plant[ J ]. Process biochemistry, 2006,41 ( 9 ) : 2050 - 2057.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部