期刊文献+

基于优化堆叠降噪自编码器的滚动轴承故障诊断 被引量:7

Fault diagnosis of rolling bearing based on optimized stacked denoising auto encoders
原文传递
导出
摘要 针对深度神经网络用于滚动轴承故障诊断时,网络隐含层层数、各隐含层节点数、稀疏系数以及输入数据置零比例等超参数会直接影响网络诊断性能的问题,提出了一种优化改进堆叠降噪自编码器(SDAE)的滚动轴承故障智能诊断方法。使用学生心理优化算法(SPBO)对降噪自编码器(DAE)网络的超参数进行自适应选取来确定SDAE网络的最优结构和参数,据此提取具有更强表征力的故障状态特征表示,输入到soft-max分类器实现滚动轴承运行工况的精确诊断。使用3个开源数据集对所提网络的性能进行验证,实验结果表明,基于SPBO-SDAE网络的诊断方法在特征有效提取、诊断速度以及故障诊断准确率方面均优于支持向量机(SVM)、反向传播(BP)神经网络、径向基(RBF)神经网络、SDAE网络、SPBO优化后的深度置信网络(DBN)、遗传算法(GA)优化后的SDAE网络以及粒子群算法(PSO)优化后的SDAE网络。 In view of the problem that hyper parameters such as the number of hidden layers,the number of nodes in each hidden layer,the sparse coefficient and the dropout ratio of input data will directly affect the diagnosis performance of the network when deep neural network is used for rolling bearing fault diagnosis,an intelligent fault diagnosis method of rolling bearing based on optimized and improved stacked denoising auto encoders(SDAE)was proposed.The student psychology based optimization(SPBO)algorithm was used to adaptively select the hyper parameters of the denoising auto encoder(DAE)network to determine the optimal structure and parameters of SDAE network.Then the fault state features with stronger representation was extracted and input to soft-max classifier to achieve accurate diagnosis of rolling bearing operating conditions.Three open source datasets are used to verify the performance of the proposed network,the results illustrate that the diagnosis method based on SPBO-SDAE network is superior to support vector machine(SVM),back propagation(BP)neural network,radial basis function(RBF)neural network,traditional SDAE network,SPBO based deep belief network(DBN),genetic algorithm(GA)based SDAE network and particle swarm optimization(PSO)based SDAE network in feature extraction,diagnosis speed and fault diagnosis accuracy.
作者 杜先君 贾亮亮 Xian-jun DU;Liang-liang JIA(College of Electrical and Information Engineering,Lanzhou University of Technology,Lanzhou 730050,China;Key Laboratory of Gansu Advanced Control for Industrial Processes,Lanzhou University of Technology,Lanzhou 730050,China;National Demonstration Center for Experimental Electrical and Control Engineering Education,Lanzhou University of Technology,Lanzhou 730050,China)
出处 《吉林大学学报(工学版)》 EI CAS CSCD 北大核心 2022年第12期2827-2838,共12页 Journal of Jilin University:Engineering and Technology Edition
基金 国家自然科学基金项目(61963025) 甘肃省高等学校创新基金项目(2021A-027).
关键词 故障诊断 滚动轴承 堆叠降噪自编码器 超参优化 特征提取 fault diagnosis rolling bearing stacked denoising auto encoders hyperparametric optimization feature extraction
  • 相关文献

参考文献3

二级参考文献28

  • 1李巍华,史铁林,杨叔子.基于核函数估计的转子故障诊断方法[J].机械工程学报,2006,42(9):76-82. 被引量:14
  • 2GRAHAM-ROWE D, GOLDSTON D, DOCTOROW C, et al. Big data: Science in the petabyte era[J]. Nature, 2008, 455(7209): 8-9.
  • 3HINTON G E, SALAKHUTDINOV R R. Reducing the dimensionality of data with neural networks[J]. Science, 2006, 313(5786): 504-507.
  • 4KRIZHEVSKY A, SUTSKEVER I, HINTON G E. Imagenet classification with deep convolutional neural networks[C]//Advances in Neural Information Processing Systems, 2012: 1097-1105.
  • 5BALDI P, SADOWSKI P, WHITESON D. Searching for exotic particles in high-energy physics with deep learning[J]. Nature Communications, 2014, 5(1): 1-9.
  • 6WORDEN K, STASZEWSKI W J, HENSMAN J J. Natural computing for mechanical systems research: A tutorial overview[J]. Mechanical Systems and Signal Processing, 2011, 25(1): 4-111.
  • 7BENGIO Y. Learning Foundations and Trends 2(1): 1-127. deep architectures for AI[J] in Machine Learning, 2009,.
  • 8ERHAN D, BENGIO Y, COURVILLE A, et al. Why does unsupervised pre-training help deep learning?[J]. The Journal of Machine Learning Research, 2010, 11: 625-660.
  • 9VINCENT P, LAROCHELLE H, BENGIO Y, et al. Extracting and composing robust features with denoising autoencoders[C]//Proceedings of the 25th International Conference on Machine Learning, ACM, 2008: 1096-1103.
  • 10JARDINE A K S, LIN D, BANJEVIC D. A review on machinery diagnostics and prognostics implementingcondition-based maintenance[J]. Mechanical Systems and Signal Processing, 2006, 20(7): 1483-1510.

共引文献473

同被引文献72

引证文献7

二级引证文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部