期刊文献+

热工过程海量数据的高质量样本提取方法及应用

High-quality Sample Selection Method for Mass Operating Data of Thermal Process and Corresponding Application
在线阅读 下载PDF
导出
摘要 提出了一种面向热工过程海量运行数据的高质量样本提取方法,通过主成分分析(PCA)提取系统隐变量,采用基于稳态权重的合成少数类过采样(SWSMOTE)来补充少数类工况样本。以燃气轮机为工程算例,验证所提算法的有效性。结果表明:提出的高质量样本提取方法可将原始数据数量压缩到10%左右,模型平均均方根误差从0.042下降至0.031,模型训练时间减少90%。 A method of high-quality sample selection was proposed for mass operating data of thermal processes. The latent variables of the system were selected through principal component analysis(PCA), and the samples were supplied by the steady weights synthetic minority over sampling technique(SWSMOTE) for the operating condition with fewer samples. After which, taking a gas turbine as an engineering example, the availability of the proposed method was verified. Results show that, the original data can be compressed to about 10% by the proposed method for high-quality sample selection, and the average root mean square error of the model can be reduced from 0.042 to 0.031. The training time of the model can be reduced by 90%.
作者 何康 汪勇 陈荣泽 任少君 司风琪 He Kang;Wang Yong;Chen Rongze;Ren Shaojun;Si Fengqi(School of Energy and Environment,Southeast University,Nanjing 210096,China;Shanghai Power Equipment Research Institute Co.Ltd.,Shanghai 200240,China)
出处 《发电设备》 2023年第1期59-64,共6页 Power Equipment
基金 国家自然科学基金资助项目(51976031) 国家电力投资集团有限公司统筹研发经费支持项目(TC2019HD10) 上海发电设备成套设计研究院有限责任公司科技发展基金(201909009C)。
关键词 热工过程 样本提取 数据约简 thermal process sample selection data reduction
  • 相关文献

参考文献4

二级参考文献44

  • 1李初福,陈丙珍,何小荣,邱彤,胡山鹰.用于含过失误差数据稳态检测的改进滤波法[J].清华大学学报(自然科学版),2004,44(9):1160-1162. 被引量:12
  • 2梁化楼,戴贵亮.人工神经网络与遗传算法的结合:进展及展望[J].电子学报,1995,23(10):194-200. 被引量:71
  • 3牛征,刘吉臻,牛玉广.动态多主元模型故障检测方法在变工况过程中的应用[J].动力工程,2005,25(4):554-558. 被引量:18
  • 4Narasimhan S,Mah R S H,Tamhane A C,et al.A composite statistical test for detecting changes of steady states[J].AICHE J,1986.32(9):1409~1418.
  • 5Narasimhan S,Chen Shan Kao,Mah R S H.Detecting changes of steady states using the mathematical theory of evidence[J].AICHE J,1987.33(11):1930~1932.
  • 6Dorr R,Kratz F,Ragot J.Detection,isolation,and identification of sensor faults in nuclear power plants[J].IEEE Trans on Control Systems Technology,1997,5(1):42~60.
  • 7从松波.博士后出站报告[D].清华大学化工系,1998.
  • 8Li R,Olson J H,Chester D L.Dynamic fault detection and diagnosis using neural networks[C].Proc.of 5th IEEE Symp,Intell.Control,1990:1169~1174.
  • 9Takagi T,Sugeno M.Fuzzy identification of systems and its applications to modeling and control[J].IEEE Trans.on Systems,Man and Cybernetics,1985,15(1):116~132.
  • 10Jackson JE.A user's guide to principle compoents[M].Wiley,New York:1991.

共引文献105

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部