摘要
Laboratory uniaxial compression creep tests,with differential stress of 30 MPa hold for 3 h,were performed on Chang-7,Longmaxi(LMX)and Barnett shales to study the influence of SC-CO_(2)on short-term viscoelastic properties.To this end,the wet shale samples were treated with SC-CO_(2)with a pressure of30 MPa and a temperature of 110℃for 14 days.We analyzed the creep data using the fractional Maxwell model.To investigate microscopic structural alterations,the surface morphology of the same location,before and after SC-CO_(2)-water exposure,was examined by SEM images.Compared with dry shales,dynamic and static elastic moduli decreased by up to 25.02%and 55.83%,respectively,but the creep deformation increased by 200%for LMX and Chang-7 shales,and 500%for the Barnett shale treated by SC-CO_(2).Compared to dry sample,there is an increase in calculated fractional orders of 0.02,0.07,0.22 for SC-CO_(2)treated samples,indicating that SC-CO_(2)treatment is likely to enhance shale creep.SEM investigation confirmed physicochemical mechanisms responsible for the observed elastic damage and creep enhancement,including mineral dissolution and swelling caused by SC-CO_(2).This work would further improve our current understanding of the time-dependent deformation of shale under chemicalmechanical coupling effects during CO_(2)capture utilization and storage.
基金
support of the National Science Fund for Distinguished Young Scholars(51925405)
Beijing Outstanding Young Scientist Program(BJJWZYJH01201911414038)
National Natural Science Foundation of China(52104050)
National Natural Science Foundation of China(52174011)
China Postdoctoral Science Foundation(2021M703579)
China University of Petroleum,Beijing(ZX20200119)。