期刊文献+

氯胺酮复合右美托咪定对七氟烷麻醉下小儿扁桃体腺样体切除术后谵妄的影响 被引量:8

Effects of ketamine combined with dexmedetomidine on delirium after tonsillectomy and adenoidectomy in children under sevoflurane anesthesia
在线阅读 下载PDF
导出
摘要 目的 探索七氟烷麻醉下低剂量的氯胺酮复合右美托咪定在小儿扁桃体腺样体切除术中的术后谵妄发生率和其他麻醉不良反应。方法 共90名接受扁桃体腺样体切除术的患儿被分成试验组(45例)及对照组(45例)。手术期间使用七氟烷诱导和维持麻醉。手术结束前10 min,试验组患儿接受0.15 mg/kg低剂量的氯胺酮静脉注射,随后给予0.3μg/kg的右美托咪定静脉注射。对照组患儿接受与体重匹配的生理盐水静脉注射。术后谵妄和疼痛情况分别使用儿童麻醉苏醒期谵妄(PAED)量表和客观疼痛评分(OPS)进行评估。记录患儿临床信息、术中及术后麻醉情况。结果 试验组患儿的术后谵妄发生率和严重程度显著低于对照组(11.11%vs. 28.89%, 2.22%vs. 13.33%,均P<0.05)。试验组患儿中苏醒后PAED得分和OPS最高分显著低于对照组(均P<0.05);同时,试验组患儿中OPS>4分的比例为15.56%,显著低于对照组的62.22%(P<0.05)。与对照组16例(35.56%)比较,试验组中需要补充芬太尼镇静镇痛的患儿为6例(13.33%)。试验组患儿麻醉结束到睁眼的时间及麻醉结束到拔除气管插管的时间显著长于对照组(均P<0.05)。结论 手术结束前10 min加入低剂量的氯胺酮和右美托咪定可使得小儿扁桃体腺样体切除术后谵妄和严重术后谵妄的发生率和持续时间降低,且氯胺酮复合右美托咪定的使用方式和剂量安全可靠,不会导致不良反应发生率增加。 Objective To investigate whether low-dose ketamine combined with dexmedetomidine could reduce the rate of postoperative delirium under sevoflurane anesthesia and at the same time would not increase other anesthetic side effects of tonsillectomy in children under sevoflurane anesthesia.Methods A total of 90 child patients who underwent tonsillectomy were equally divided into the experimental group(n=45) and the control group(n=45). Sevoflurane was used to induce and maintain anesthesia. Ten minutes before end of surgery, the children in the experimental group received low-dose ketamine at a dosage of 0. 15 mg/kg intravenously, followed by an intravenous injection of dexmedetomidine at a dosage of 0. 3 μg/kg. The patients in the control group received weight-dependent volume matched normal saline intravenously. Postoperative delirium and pain were assessed by pediatric anesthesia emergence delirium(PAED) scale and objective pain scale(OPS). Related clinical data during anesthesia and patient conditions were recorded after surgery.Results The rate and severity of postoperative delirium in the experimental group were significantly lower than those in the control group(11. 11% vs. 28. 89%, 2. 22% vs. 13. 33%, all P<0. 05). In addition, the PAED scores and the highest OPS scores in the patients of the experimental group after wake up were also significantly lower than those in the control group(both P<0. 05). At the same time, the proportion of OPS>4 points in the experimental group was 15. 56%, which was significantly lower than 62. 22% in the control group(P<0. 05). Compared with the 16 patients(35. 56%) in the control group, there were only 6 patients(13. 33%) in the experimental group who required supplemental sedation and analgesia with fentanyl. The time from the termination of anesthesia to eye opening of the patients and the time from the termination of anesthesia to the removal of tracheal intubation in the experimental group were significantly longer than those in the control group(all P<0. 05).Conclusion The supplementation of low-dose ketamine and dexmedetomidine about 10 minutes before end of surgery could reduce the rate and length of pediatric post-tonsillectomy delirium and severity of post-operative delirium. The usage and dosage of ketamine and dexmedetomidine in this study were safe, and will not induce higher rate of adverse reactions.
作者 徐红梅 周红刚 胡秀改 刘晶 Xu Hongmei;Zhou Honggang;Hu Xiugai;Liu Jing(Department of Anesthesiology,Branch Hospital of Huai’an First People’s Hospital,Jiangsu Province,Huai’an 223002,China)
出处 《海军医学杂志》 2022年第12期1335-1339,共5页 Journal of Navy Medicine
关键词 氯胺酮 右美托咪定 七氟烷 小儿麻醉 术后谵妄 Ketamine Dexmedetomidine Sevoflurane Pediatric anesthesia Postoperative delirium
  • 相关文献

参考文献6

二级参考文献117

  • 1Sinner B, Graf BM. Ketamine. Handb Exp Pharmacol 2008: 313- 33.
  • 2Geisslinger G, Hering W, Thomann P, Knoll R, Kamp HD, Brune K. Pharmacokinetics and pharmacodynamics of ketamine enantiomers in surgical patients using a stereoselective analytical method. Br J Anaesth 1993; 70: 666-71.
  • 3Bjorkman S, Redke F. Clearance of fentanyl, alfentanil, metho- hexitone, thiopentone and ketamine in relation to estimated hepatic blood flow in several animal species: application to prediction of clearance in man, J Pharm Pharmacol 2000; 52: 1065-74.
  • 4Restrepo JG, Garcia-Martin E, Martinez C, Agundez JA. Polymorphic drug metabolism in anaesthesia. Curr Drug Metab 2009; 10: 236- 46.
  • 5Capponi L, Schmitz A, Thormann W, Theurillat R, Mevissen M. In- vitro evaluation of differences in phase 1 metabolism of ketamine and other analgesics among humans, horses, and dogs. Am J Vet Res 2009; 70: 777-86.
  • 6Lodge D, Anis NA, Burton NR. Effects of optical isomers of ketamine on excitation of cat and rat spinal neurones by amino acids and acetylcholine. Neurosci Lett 1982; 29: 281-6.
  • 7Chizh BA. Low dose ketamine: a therapeutic and research tool to explore N-methyI-D-aspartate (NMDA) receptor-mediated plasticity in pain pathways. J Psychopharmaco12007; 21: 259-71.
  • 8Stahl SM. Mechanism of action of ketamine. CNS Spectrums 2013; 18: 171-4.
  • 9Craven R. Ketamine. Anaesthesia 2007; 62 Suppl 1: 48-53.
  • 10Brown D J, Brugger H, Boyd J, Paal P. Accidental hypothermia. N Engl J Meg 2012; 367: 1930-8.

共引文献51

同被引文献106

引证文献8

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部