摘要
The development of global information technology makes human life intelligent,and the large-scale use of various electronic devices increases the electromagnetic radiation in the surrounding environment.This has created a requirement for the development of high-performance electromagnetic wave absorbers to eliminate electromagnetic pollution.However,the preparation of electromagnetic wave absorbers with excellent electromagnetic loss capability remains a great challenge.Here,we present a method to prepare Co/ZnO/C@MWCNTs(CZC@M)composites by pyrolysis of ZnCo-MOF@MWCNTs(MOF@M).Specifically,MWCNTs are uniformly distributed on the CZC surface to form multiple heterogeneous interfaces,which will lead to an increase in polarizability.In addition,changing the amounts of MWCNTs in the composite can modulate its dielectric constant and impedance matching properties.Impressively,at only 10%sample content,the minimum reflection loss of-41.75 d B and the maximum effective absorption bandwidth of 4.72 GHz are obtained at thicknesses of 2.4 mm and 2.2 mm,respectively.Overall,the results reported in this work provide a new design strategy for the synthesis of high-performance electromagnetic wave absorbers with potential applications in the elimination of electromagnetic pollution.
基金
the Natural Science Foundation of Shandong Province(No.ZR2019YQ24)
Taishan Scholars and Young Experts Program of Shandong Province(No.tsqn202103057)
the Qingchuang Talents Induction Program of Shandong Higher Education Institution(Research and Innovation Team of Structural-Functional Polymer Composites)。