摘要
为了避免传统机器学习算法进行人脸识别时存在的性能差、泛化能力弱等问题,现提出一种基于LeNet-5改进的卷积神经网络模型。该模型包含输入层、三个卷积和池化层、一个全连接层和输出层。每次卷积完,成后,都使用ReLU激活函数进行非线性映射来增强模型的拟合能力;每次最大池化完成后,都使用Dropout方法防止过拟合。运行结果表明改进的卷积神经网络模型对动态采集的人脸图像数据集进行模型训练和模型预测时,训练精度和预测精度都达到了99%,优于传统人脸识别算法,充分验证了改进的卷积神经网络模型的有效性。
出处
《电子制作》
2022年第24期42-45,共4页
Practical Electronics