期刊文献+

基于机器学习的急性缺血性脑卒中医院感染预测模型建立与评价 被引量:15

Construction and evaluation of a machine-learning-based model for predicting healthcare-associated infection in patients with acute ischemic stroke
在线阅读 下载PDF
导出
摘要 目的利用急性缺血性脑卒中患者诊疗数据构建基于机器学习的急性缺血性脑卒中医院感染预测模型,为临床治疗早期干预提供支持。方法选取江西某三甲医院神经内科2020年10月—2021年12月2360例脑卒中住院患者作为研究对象。按8∶2的比例随机分为训练集(1888例)与测试集(472例),纳入人口统计学数据以及入院48 h内临床诊疗数据,分析急性缺血性脑卒中患者发生医院感染的独立危险因素。使用logistic回归和3种机器学习算法[随机森林(RandomForest)、XGBoost、LightGBM]构建急性缺血性脑卒中医院感染预测模型,应用ROC曲线下面积(AUC)评估4种预测模型的预测效果。结果574例发生医院感染,医院感染发生率为24.32%。logistic回归分析结果显示,年龄>65岁、入院NIHSS评分>5分、血白细胞计数>10×10^(9)/L、血清钠≤135 mmol/L、侵入性操作、吞咽困难为医院感染的危险因素。logistic回归、RandomForest、XGBoost、LightGBM预测模型在测试集中预测缺血性脑卒中医院感染的AUC值分别为0.854、0.850、0.881、0.870。结论基于机器学习医院感染预测模型有利于早期识别急性缺血性脑卒中患者医院感染及挖掘危险因素,及时采取防控措施,可降低医院感染发生率。 Objective To construct a machine-learning-based model through diagnosis and treatment data of patients with acute ischemic stroke(AIS)to predict healthcare-associated infection(HAI)in AIS patients and provide support for early intervention of clinical treatment.Methods 2360 inpatients with stroke from October 2020 to December 2021 in department of neurology of a tertiary first-class hospital in Jiangxi Province were selected as study subjects and randomly divided at 8∶2 ratio into training set(n=1888)and testing set(n=472).Demographic data as well as clinical diagnosis and treatment data within 48 hours of admission were included to analyze the indepen-dent risk factors for HAI in AIS patients.Prediction model of HAI in AIS patients was constructed with logistic regression and three machine-learning algorithms(RandomForest,XGBoost,LightGBM).Area under the receiver operating characteristic curve(AUC)was adopted to evaluate the prediction efficacy of four prediction models.Results HAI occurred in 574 patients,incidence of HAI was 24.32%.Logistic regression analysis showed that age>65 years old,NIHSS score>5 points at admission,white blood cell count>10×10^(9)/L,serum sodium≤135 mmol/L,invasive operation and dysphagia were risk factors for HAI.AUC values of logistic regression,RandomForest,XGBoost and LightGBM prediction models for predicting HAI in AIS patients in the test set were 0.854,0.850,0.881 and 0.870 respectively.Conclusion Machine-learning-based model for predicting HAI is conducive to the early identification of HAI and relevant risk factors,and facilitates timely preventive and control measures in AIS patients,thus reduces the incidence of HAI.
作者 刘建模 罗颢文 俞鹏飞 吴一帆 韩梦琦 贾伟杰 易应萍 LIU Jian-mo;LUO Hao-wen;YU Peng-fei;WU Yi-fan;HAN Meng-qi;JIA Wei-jie;YI Ying-ping(Department of Science and Technology,The Second Affiliated Hospital of Nanchang University,Nanchang 330000,China;School of Public Health,Nanchang University,Nanchang 330000,China)
出处 《中国感染控制杂志》 CAS CSCD 北大核心 2023年第2期129-135,共7页 Chinese Journal of Infection Control
基金 国家自然科学基金项目(81960609) 国家重点研发计划项目(2020YFC2002901) 南昌大学第二附属医院资助项目(2021efyB03)。
关键词 急性缺血性脑卒中 机器学习 预测模型 医院感染 acute ischemic stroke machine-learning prediction model healthcare-associated infection
  • 相关文献

参考文献9

二级参考文献52

  • 1FAHMI F, BEENEN LF, STREEKSTRA GJ, et al. Head move- ment during CT brain perfusion acquisition of patientswith sus- pected acute isehemic stroke[J]. Eur J Radiol, 2013, 82(12): 2334- 2341.
  • 2UNAL E, MUNGAN S, BILEN S, et al. The effects of lipopro- tein (a) and homocysteine on prognosis and risk factors in acute isehemie stroke[J]. Int J Neurosci, 2013, 123(8): 532-536.
  • 3PARKHURST CN, YANG G, NINAN I, et al. Microglia promote learning-dependent synapse formation through brain-derived neu- rotrophic factor[J]. Cell, 2013, 155(7): 1596-1609.
  • 4CHEKHONIN VP, LEBEDEV SV, VOLKOV AI, et al. Activation of expression of brain-derived neurotrophic factor at the site of implantation of allogenic and xenogenic neural stem (progenitor) cells in rats with ischemic cortical stroke[J]. Bull Exp Bid Med, 2011, 150(4): 515-518.
  • 5the GUSTO Investgators. An international randomized trial com- paring four thrombolytic stra-tegies for acute myocrial infarction[J]. N Engl J Med, 1993, 329(10): 673-682.
  • 6PALUMBO V, BALDASSERONI S, NENCINI P, et al. The co- existence of heart failure predicts short term mortality, but not disability, in patients with acute ischemic stroke treated with thmmbolysis: the florence area registry[J]. Eur J Intern Med, 2012, 23(6): 552-527.
  • 7LANZ TA, BOVE SE, PILSMAKER CD, et al. Robust changes in expression of brain-derlved neurotrophic factor (BDNF) mR- NA and protein across the brain do not translate to detectable changes in BDNF levels in CSF or plasma[J]. Biomarkers, 2012, 17(6): 524-531.
  • 8HELDT SA, ZIMMERMANN K, PARKER K, et al. Bdnf dele- tion or TrkB impairment in amygdala inhibits both appetitive and aversive learning[J]. J Neurosci, 2014, 34(7): 2444-2450.
  • 9DAI L, WANG D, MENG H, et al. Association between the BDNF G196A and C270T polymorphisms and parkinson's dis- ease: a meta-analysis[J]. Int J Neurosci, 2013, 123(10): 675-683.
  • 10ZHAO J, WU H, ZHENG L, et al. Brain-derived neurotrophic factor G196A polymorphism predicts 90-day outcome of is chemic stroke in Chinese: a novel finding[J]. Brain Res, 2013, 1537: 312-318.

共引文献7614

同被引文献240

引证文献15

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部