期刊文献+

稀土Sm对Ti-Fe-Mn储氢合金动力学性能的影响 被引量:1

Influence of Smelement on kinetic properties of Ti-Fe-Mn hydrogen storage alloy
在线阅读 下载PDF
导出
摘要 通过真空感应熔炼技术成功制备了铸态Ti_(1)Fe_(0.8)Mn_(0.2)Sm_(x)(x=0.02,0.04,0.06,0.08)储氢合金,通过X射线衍射仪(XRD),描电子显微镜(SEM),透射电子显微镜(TEM)以及Sievert等体积方法系统地研究了掺杂Sm元素对合金的相组成、微观结构及吸放氢动力学性能的影响。结果表明,Sm元素的掺杂不仅能够促进TiFeH_(2)相的形成,同时也能抑制不吸氢相TiFe_(2)相的出现,这有利于提高合金的有效储氢容量。此外,Sm元素的掺杂能有效改善合金的活化性能,大幅度降低活化潜伏期,且可以同时改善了合金的吸放氢动力学性能,并有效降低合金吸放氢活化能。且当x=0.08时,其合金吸氢活化能为-6.8 kJ·mol^(-1),放氢活化能为48.9 kJ·mol^(-1)。 As-cast Ti_(1)Sm_(x)Fe_(0.8)Mn_(0.2)(x=0.02,0.04,0.06,0.08)hydrogen storage alloys were successful prepared by vacuum induction smelting technology,and the effect of the Sm elements on the phase composition,microstructure,and the de/hydrogenation kinetic performance were systematacially studied by X-ray diffraction(XRD),scanning electron microscope(SEM),transmission electron microscopy(TEM)and Sievert isometric method.The results showed that the doping of Sm can not only promote the formation of TiFeH_(2)phase,but also inhibit the appearance of TiFe_(2)phase,which is beneficial to improve the effective hydrogen storage capacity of the alloy.Besides,the doping of Sm can effectively improve the activation properties of the alloy,and greatly reduce the activation latency.Meanwhile,it also improves the de/hydrogenation kinetic performance and effectively reduces the activation energy of hydrogen absorption and desorption.When x=0.08,the activation energy of hydrogen absorption and desorption is-6.8 kJ/mol and 48.9 kJ/mol,respectively.
作者 雍辉 姚继伟 徐先流 刘宝胜 胡季帆 YONG Hui;YAO Jiwei;XU Xianliu;LIU Baosheng;HU Jifan(School of Materials Science&Engineering,Taiyuan University of Science and Technology,Taiyuan 030024,China)
出处 《功能材料》 CAS CSCD 北大核心 2023年第2期2217-2223,共7页 Journal of Functional Materials
基金 来晋优秀博士奖励资金(20212042) 太原科技大学科研启动基金(20202040)。
关键词 储氢材料 TiFe基合金 稀土掺杂 微观结构 动力学性能 hydrogen storage TiFe alloy RE doping microstructure kinetics
  • 相关文献

参考文献4

二级参考文献10

  • 1高岩,罗堪昌,李伯林,李祖鑫,朱敏.Ti-Fe二元系在机械合金化过程中的结构转变及纳米晶TiFe储氢合金的制备[J].功能材料,1998,29(3):256-259. 被引量:10
  • 2尹杰,李谦,冷海燕.TiFe系储氢合金性能改善研究进展[J].材料导报,2016,30(19):141-147. 被引量:12
  • 3Jiasheng Wang,Yuan Li,Ting Liu,DANDan Peng,Shumin Han.Synthesis of Mg-based composite material with in-situ formed LaH_3 and its hydrogen storage characteristics[J].Journal of Rare Earths,2018,36(7):739-744. 被引量:6
  • 4Zhen-yang LI,Sheng-li LI,Ze-ming YUAN,Yang-huan ZHANG,Yan QI.Microstructure, hydrogen storage thermodynamics and kinetics of La_5Mg_(95-x)Ni_x(x=5, 10, 15) alloys[J].Transactions of Nonferrous Metals Society of China,2019,29(5):1057-1066. 被引量:4
  • 5M.Ablikim,M.N.Achasov,P.Adlarson,S.Ahmed,M.Albrecht,M.Alekseev,A.Amoroso,F.F.An,Q.An,Y.Bai,O.Bakina,R.Baldini Ferroli,Y.Ban,K.Begzsuren,J.V.Bennett,N.Berger,M.Bertani,D.Bettoni,F.Bianchi,J Biernat,J.Bloms,I.Boyko,R.A.Briere,L.Calibbi,H.Cai,X.Cai,A.Calcaterra,G.F.Cao,N.Cao,S.A.Cetin,J.Chai,J.F.Chang,W.L.Chang,J.Charles,G.Chelkov,Chen,G.Chen,H.S.Chen,J.C.Chen,M.L.Chen,S.J.Chen,Y.B.Chen,H.Y.Cheng,W.Cheng,G.Cibinetto,F.Cossio,X.F.Cui,H.L.Dai,J.P.Dai,X.C.Dai,A.Dbeyssi,D.Dedovich,Z.Y.Deng,A.Denig,Denysenko,M.Destefanis,S.Descotes-Genon,F.De Mori,Y.Ding,C.Dong,J.Dong,L.Y.Dong,M.Y.Dong,Z.L.Dou,S.X.Du,S.I.Eidelman,J.Z.Fan,J.Fang,S.S.Fang,Y.Fang,R.Farinelli,L.Fava,F.Feldbauer,G.Felici,C.Q.Feng,M.Fritsch,C.D.Fu,Y.Fu,Q.Gao,X.L.Gao,Y.Gao,Y.Gao,Y.G.Gao,Z.Gao,B.Garillon,I.Garzia,E.M.Gersabeck,A.Gilman,K.Goetzen,L.Gong,W.X.Gong,W.Gradl,M.Greco,L.M.Gu,M.H.Gu,Y.T.Gu,A.Q.Guo,F.K.Guo,L.B.Guo,R.P.Guo,Y.P.Guo,A.Guskov,S.Han,X.Q.Hao,F.A.Harris,K.L.He,F.H.Heinsius,T.Held,Y.K.Heng,Y.R.Hou,Z.L.Hou,H.M.Hu,J.F.Hu,T.Hu,Y.Hu,G.S.Huang,J.S.Huang,X.T.Huang,X.Z.Huang,Z.L.Huang,N.Huesken,T.Hussain,W.Ikegami Andersson,W.Imoehl,M.Irshad,Q.Ji,Q.P.Ji,X.B.Ji,X.L.Ji,H.L.Jiang,X.S.Jiang,X.Y.Jiang,J.B.Jiao,Z.Jiao,D.P.Jin,S.Jin,Y.Jin,T.Johansson,N.Kalantar-Nayestanaki,X.S.Kang,R.Kappert,M.Kavatsyuk,B.C.Ke,I.K.Keshk,T.Khan,A.Khoukaz,P.Kiese,R.Kiuchi,R.Kliemt,L.Koch,O.B.Kolcu,B.Kopf,M.Kuemmel,M.Kuessner,A.Kupsc,M.Kurth,M.G.Kurth,W.Kuhn,J.S.Lange,P.Larin,L.Lavezzi,H.Leithoff,T.Lenz,C.Li,Cheng Li,D.M.Li,F.Li,F.Y.Li,G.Li,H.B.Li,H.J.Li,J.C.Li,J.W.Li,Ke Li,L.K.Li,Lei Li,P.L.Li,P.R.Li,Q.Y.Li,W.D.Li,W.G.Li,X.H.Li,X.L.Li,X.N.Li,X.Q.Li,Z.B.Li,H.Liang,H.Liang,Y.F.Liang,Y.T.Liang,G.R.Liao,L.Z.Liao,J.Libby,C.X.Lin,D.X.Lin,Y.J.Lin,B.Liu,B.J.Liu,C.X.Liu,D.Liu,D.Y.Liu,F.H.Liu,Fang Liu,Feng Liu,H.B.Liu,H.M.Liu,Huanhuan Liu,Huihui Liu,J.B.Liu,J.Y.Liu,K.Y.Liu,Ke Liu,Q.Liu,S.B.Liu,T.Liu,X.Liu,X.Y.Liu,Y.B.Liu,Z.A.Liu,Zhiqing Liu,Y.F.Long,X.C.Lou,H.J.Lu,J.D.Lu,J.G.Lu,Y.Lu,Y.P.Lu,C.L.Luo,M.X.Luo,P.W.Luo,T.Luo,X.L.Luo,S.Lusso,X.R.Lyu,F.C.Ma,H.L.Ma,L.L.Ma,M.M.Ma,Q.M.Ma,X.N.Ma,X.X.Ma,X.Y.Ma,Y.M.Ma,F.E.Maas,M.Maggiora,S.Maldaner,S.Malde,Q.A.Malik,A.Mangoni,Y.J.Mao,Z.P.Mao,S.Marcello,Z.X.Meng,J.G.Messchendorp,G.Mezzadri,J.Min,T.J.Min,R.E.Mitchell,X.H.Mo,Y.J.Mo,C.Morales Morales,N.Yu.Muchnoi,H.Muramatsu,A.Mustafa,S.Nakhoul,Y.Nefedov,F.Nerling,I.B.Nikolaev,Z.Ning,S.Nisar,S.L.Niu,S.L.Olsen,Q.Ouyang,S.Pacetti,Y.Pan,M.Papenbrock,P.Patteri,M.Pelizaeus,H.P.Peng,K.Peters,A.A.Petrov,J.Pettersson,J.L.Ping,R.G.Ping,A.Pitka,R.Poling,V.Prasad,M.Qi,T.Y.Qi,S.Qian,C.F.Qiao,N.Qin,X.P.Qin,X.S.Qin,Z.H.Qin,J.F.Qiu,S.Q.Qu,K.H.Rashid,C.F.Redmer,M.Richter,M.Ripka,A.Rivetti,V.Rodin,M.Rolo,G.Rong,J.L.Rosner,Ch.Rosner,M.Rump,A.Sarantsev,M.Savrie,K.Schoenning,W.Shan,X.Y.Shan,M.Shao,C.P.Shen,P.X.Shen,X.Y.Shen,H.Y.Sheng,X.Shi,X.D Shi,J.J.Song,Q.Q.Song,X.Y.Song,S.Sosio,C.Sowa,S.Spataro,F.F.Sui,G.X.Sun,J.F.Sun,L.Sun,S.S.Sun,X.H.Sun,Y.J.Sun,Y.K Sun,Y.Z.Sun,Z.J.Sun,Z.T.Sun,Y.T Tan,C.J.Tang,G.Y.Tang,X.Tang,V.Thoren,B.Tsednee,I.Uman,B.Wang,B.L.Wang,C.W.Wang,D.Y.Wang,H.H.Wang,K.Wang,L.L.Wang,L.S.Wang,M.Wang,M.Z.Wang,Wang Meng,P.L.Wang,R.M.Wang,W.P.Wang,X.Wang,X.F.Wang,X.L.Wang,Y.Wang,Y.F.Wang,Z.Wang,Z.G.Wang,Z.Y.Wang,Zongyuan Wang,T.Weber,D.H.Wei,P.Weidenkaff,H.W.Wen,S.P.Wen,U.Wiedner,G.Wilkinson,M.Wolke,L.H.Wu,L.J.Wu,Z.Wu,L.Xia,Y.Xia,S.Y.Xiao,Y.J.Xiao,Z.J.Xiao,Y.G.Xie,Y.H.Xie,T.Y.Xing,X.A.Xiong,Q.L.Xiu,G.F.Xu,L.Xu,Q.J.Xu,W.Xu,X.P.Xu,F.Yan,L.Yan,W.B.Yan,W.C.Yan,Y.H.Yan,H.J.Yang,H.X.Yang,L.Yang,R.X.Yang,S.L.Yang,Y.H.Yang,Y.X.Yang,Yifan Yang,Z.Q.Yang,M.Ye,M.H.Ye,J.H.Yin,Z.Y.You,B.X.Yu,C.X.Yu,J.S.Yu,C.Z.Yuan,X.Q.Yuan,Y.Yuan,A.Yuncu,A.A.Zafar,Y.Zeng,B.X.Zhang,B.Y.Zhang,C.C.Zhang,D.H.Zhang,H.H.Zhang,H.Y.Zhang,J.Zhang,J.L.Zhang,J.Q.Zhang,J.W.Zhang,J.Y.Zhang,J.Z.Zhang,K.Zhang,L.Zhang,S.F.Zhang,T.J.Zhang,X.Y.Zhang,Y.Zhang,Y.H.Zhang,Y.T.Zhang,Yang Zhang,Yao Zhang,Yi Zhang,Yu Zhang,Z.H.Zhang,Z.P.Zhang,Z.Q.Zhang,Z.Y.Zhang,G.Zhao,J.W.Zhao,J.Y.Zhao,J.Z.Zhao,Lei Zhao,Ling Zhao,M.G.Zhao,Q.Zhao,S.J.Zhao,T.C.Zhao,Y.B.Zhao,Z.G.Zhao,A.Zhemchugov,B.Zheng,J.P.Zheng,Y.Zheng,Y.H.Zheng,B.Zhong,L.Zhou,L.P.Zhou,Q.Zhou,X.Zhou,X.K.Zhou,Xingyu Zhou,Xiaoyu Zhou,Xu Zhou,A.N.Zhu,J.Zhu,J.Zhu,K.Zhu,K.J.Zhu,S.H.Zhu,W.J.Zhu,X.L.Zhu,Y.C.Zhu,Y.S.Zhu,Z.A.Zhu,J.Zhuang,B.S.Zou,J.H.Zou,无.Future Physics Programme of BESⅢ[J].Chinese Physics C,2020,44(4). 被引量:546
  • 6赵栋梁,韩忠刚,翟亭亭,袁泽明,祁焱,张羊换.TiFe基合金储氢活化性能研究进展[J].稀有金属,2020,44(4):337-351. 被引量:11
  • 7柴志刚,赵敏寿.高能球磨对TiFe合金电极放电性能的影响[J].吉林大学学报(理学版),2002,40(4):388-391. 被引量:2
  • 8陈昀,陈长聘,CesarSequeira,陈立新,王启东.Hydrogen storage properties of Mg-doped Ti_(1.2)Fe alloys synthesized by mechanical alloying[J].中国有色金属学会会刊:英文版,2003,13(2):249-253. 被引量:3
  • 9V.Yu. Zadorozhnyy,G.S. Milovzorov,S.N. Klyamkin,M.Yu. Zadorozhnyy,D.V. Strugova,M.V. Gorshenkov,S.D. Kaloshkin.Preparation and hydrogen storage properties of nanocrystalline TiFe synthesized by mechanical alloying[J].Progress in Natural Science:Materials International,2017,27(1):149-155. 被引量:6
  • 10Gaili Sun,Yuanyuan Li,Xinxin Zhao,Yiming Mi,Lili Wang.First-Principles Investigation of Energetics and Electronic Structures of Ni and Sc Co-Doped MgH<sub>2</sub>[J].American Journal of Analytical Chemistry,2016,7(1):34-42. 被引量:3

共引文献19

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部