期刊文献+

REQUIRED NUMBER OF ITERATIONS FOR SPARSE SIGNAL RECOVERY VIA ORTHOGONAL LEAST SQUARES

原文传递
导出
摘要 In countless applications,we need to reconstruct a K-sparse signal x∈R n from noisy measurements y=Φx+v,whereΦ∈R^(m×n)is a sensing matrix and v∈R m is a noise vector.Orthogonal least squares(OLS),which selects at each step the column that results in the most significant decrease in the residual power,is one of the most popular sparse recovery algorithms.In this paper,we investigate the number of iterations required for recovering x with the OLS algorithm.We show that OLS provides a stable reconstruction of all K-sparse signals x in[2.8K]iterations provided thatΦsatisfies the restricted isometry property(RIP).Our result provides a better recovery bound and fewer number of required iterations than those proposed by Foucart in 2013.
出处 《Journal of Computational Mathematics》 SCIE CSCD 2023年第1期1-17,共17页 计算数学(英文)
基金 supported by the National Natural Science Foundation of China(grant nos.61907014,11871248,11701410,61901160) the Natural Science Foundation of Guangdong province(No.2021A1515010857) Youth Science Foundation of Henan Normal University(grant no.2019QK03) China Postdoctoral Science Foundation(grant no.2019M660557) Guangdong Province Universities and Colleges Pearl River Scholar Funded Scheme(2019).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部