摘要
研究了经典的近于凸函数类,根据解析函数从属原理和q-导算子定义了开单位圆盘中q-近于凸函数类,然后利用解析函数展开式系数比较法估算q-近于凸函数前几项系数a_(2)和a_(3)以及a_(4).进而得到相应的二阶Hankel行列式H_(2)(2),二阶和三阶Toeplitz行列式T_(2)(2),T_(3)(1)和Feteke-Szegö不等式泛函上界估计.
In this paper,we investigate the classical class of close-to-convex functions,and by applying the subordination principle of the analytic functions and q-derivative operator we mainly define the class of q-close-to-convex functions in the open unit disk.Then,according to the coefficient comparison method of analytic function expansion we estimate the first few coefficients a_(2),a_(3)and a_(4)of q-close-to-convex functions.Furthermore,we obtain the estimations of upper bounds for the corresponding second Hankel determinant H_(2)(2),second and third Toeplitz determinants T_(2)(2),T_(3)(1)and Feteke-Szegöinequality.
作者
买廷梅
龙品红
韩惠丽
李风军
MAI Tingmei;LONG Pinhong;HAN Huili;LI Fengjun(School of Mathematical Statistics,Ningxia University,Yinchuan,750021 China;School of Mathematics and Computer Science,Ningxia Normal University,Guyuan,756000,China)
出处
《纯粹数学与应用数学》
2023年第1期113-131,共19页
Pure and Applied Mathematics
基金
国家自然科学基金(11762016,12061055)
宁夏自然科学基金(2020AAC03066,2021AAC03028).