期刊文献+

基于CNN与LSTM混合算法下的学生学习表情识别研究 被引量:2

Research on Student Learning Expression Recognition Based on CNN and LSTM Hybrid Algorithm
在线阅读 下载PDF
导出
摘要 智慧课堂中学生学习表情的精准识别对于提升课堂效率,掌握学生实时学习状态具有重要的作用。传统单一性的卷积神经网络(CNN)算法对学生学习表情的特征抓取精度不够,尤其是学生微表情状态下的抓取效果更不理想。基于此,本文创新性地提出基于CNN与长短期记忆网络(LSTM)的混合表情特征提取识别算法,充分利用CNN提取学生学习表情中的空域特征并存储,对应的时域特征提取层面充分利用LSTM对学生学习表情视频序列特征进行挖掘抓取,将学生学习表情的时域特征与空域特征进行平均化处理,从而构建一套完整的学生学习表情识别算法,最后基于该算法网络进行深度学习训练。基于本文的实验结果,对应的愉悦、困惑、惊讶、中性和疲倦这五种学习情感状态识别率得到了大幅提升,对应的识别准确率最高可达71.9%,识别性能大幅提升。 The accurate recognition of students' learning expressions in smart classroom plays an important role in improving classroom efficiency and mastering students' real-time learning status.The traditional simplex convolutional neural network(CNN)algorithm is not accurate enough to capture the features of students' learning expressions,especially the capture effect of students' micro expressions.Based on this,this paper creatively proposes a hybrid expression feature extraction algorithm based on CNN and long-term memory network(LSTM),which makes full use of convolutional neural network to extract and store the spatial features of students' learning expressions,and the corresponding time-domain feature extraction layer makes full use of long-term memory network to mine and capture the video sequence features of students' learning expressions.The time-domain features and spatial features of students' learning expressions are averaged to construct a complete set of students' learning expression recognition algorithm.Finally,deep learning training is carried out based on the algorithm network.Based on the experimental results of this paper,the recognition rate of the corresponding five learning emotional states of pleasure,confusion,surprise,neutral and fatigue has been greatly improved,and the corresponding recognition accuracy can reach up to 71.9%,and the recognition performance has been greatly improved.
作者 周江 蔡臻 ZHOU Jiang;CAI Zhen(Guangdong Communication Polytechnic,Guangzhou 510650,Guangdong,China)
出处 《广东交通职业技术学院学报》 2023年第1期48-52,共5页 Journal of Guangdong Communication Polytechnic
基金 2020年广东交通职业技术学院校级科研项目(项目编号:GDCP-ZX-2020-006-N1)。
关键词 CNN与LTSM混合算法 表情识别 智慧课堂 深度学习 CNN and LTSM hybrid algorithm expression recognition smart classroom deep learning
  • 相关文献

参考文献17

二级参考文献116

  • 1罗革新,王雨,丁闫,祝天光,雷晓娟.可视化磁带管理及其在在地震数据处理中的应用[J].石油工业计算机应用,2005,13(2):2-9. 被引量:1
  • 2苏惠,安锦文.SEG-D数据格式解析[J].石油仪器,2005,19(5):42-44. 被引量:3
  • 3吴志勇,蔡莲红.基于动态贝叶斯网络的音视频双模态说话人识别[J].计算机研究与发展,2006,43(3):470-475. 被引量:11
  • 4冯震宇.Focus地震数据处理系统磁带I/O子系统分析及应用[A].中国地球物理学会第十八届年会论文集[C].2002:264.
  • 5PORTER S, TEN BRINKE L. Reading between the Lies Identifying Concealed and Falsified Emotions in Universal Facial Expressions[ J]. Psychological Science, 2008, 19(5) : 508-514.
  • 6HAGGARD E A, ISAACS K S. Micromomentary Facial Expressions as Indicators of Ego Mechanisms in Psychotherapy [ C ]// Methods of Research in Psychotherapy. New York, US: Springer, 1966: 154-165.
  • 7EKMAN P, FRIESEN W ~. Nonverbal Leakage and Clues to Deception [ J]. Psychiatry, 1969, 32( 1 ) : 88-106.
  • 8ZHANG M, FU Q, CHEN Y H, et al. Emotional Context Influences Micro-Expression Recognition [ J ]. Plos One, 2014, 9(4) : 1-4.
  • 9POLIKOVSKY S, KAMEDA Y, OHTA Y. Facial Micro-Expressions Recognition Using High Speed Camera and 3d-GradientDescriptor [ C ]//The 3rd International Conference on Crime Detection and Prevention ( ICDP 2009). London, UK: IET, 2009 : 1-6.
  • 10SHREVE M, GODAVARTHY S, MANOHAR V, et al. Towards Macro-and Micro-Expression Spotting in Video Using Strain Patterns [ C ]//2009 Workshop on Applications of Computer Vision (WACV). Piscataway, NJ : IEEE, 2009 : 1-6.

共引文献802

同被引文献19

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部