期刊文献+

平衡衔铁受话器的非线性特性与失真仿真模型

Nonlinearities and distortion model of a balanced armature receiver
在线阅读 下载PDF
导出
摘要 平衡衔铁受话器(BAR)具有尺寸小、电声转换效率高和灵敏度高等特点。在大振幅振动时,BAR存在显著的非线性,并导致较严重的失真。利用磁路的集总参数模型(LPM)深入研究BAR的非线性,确立可表征其非线性特性的4个非线性参数,采用迭代计算方法研究平衡衔铁磁阻对非线性特性的重要影响。基于所提出的网格移动和旋转等效的有限元模型(FEM),考虑平衡衔铁磁阻的非线性,准确仿真计算得到非线性参数,再将它们代入到非线性LPM模型中,最终建立FEM与LPM相结合的失真仿真模型。实验结果表明,该失真仿真模型可比较准确地预测BAR在不同加载电压时的总谐波失真以及二次和三次谐波失真。 A balanced armature receiver(BAR)is characterized by small size,high electroacoustic conversion efficiency and high sensitivity.High distortion is caused by the significant nonlinearities when the BAR vibrates at high amplitudes.Four nonlinear parameters representing the nonlinearities are derived from the lumped parameter model(LPM)of magnetic circuit.The iterative algorithm is adopted to investigate the important effect of armature reluctance on the nonlinearities.The nonlinear parameters are simulated accurately by the proposed finite element model(FEM)based on moving mesh and equivalent rotation,considering the nonlinear armature reluctance.An integrated FEM and LPM model is developed for analyzing distortion in the case that the simulated nonlinear parameters are substituted into the nonlinear LPM model of the BAR.The experimental results show that the total harmonic distortion,the second-order and third-order harmonic distortion of the BAR with different load can be predicted correctly by the distortion model.
作者 陆晓 温周斌 李俊宝 LU Xiao;WEN Zhoubin;LI Junbao(Institute of Acoustics,Chinese Academy of Sciences Beijing 100190;University of Chinese Academy of Sciences,Beijing 100049;Zhejiang Electro-Acoustic R&D Center,CAS Jiashan 314115;Shanghai Acoustic Laboratory,Chinese Academy of Sciences Shanghai 201815)
出处 《声学学报》 EI CAS CSCD 北大核心 2023年第2期395-405,共11页 Acta Acustica
关键词 平衡衔铁受话器 非线性 失真 集总参数模型 有限元 Balanced armature receiver Nonlinearity Distortion Lumped parameter model Finite element
  • 相关文献

参考文献2

二级参考文献12

  • 1LEE C M, HWANG S M. Optimization of SPL and THD performance of microspeakers considering coupling effects[J]. IEEE Trans. Magn., 2011, 47(5): 934-937.
  • 2KIM W, KIM Y Y. Magnetic circuit design by topology optimization for Lorentz force maximization in a micros- peaker[J]. J. Mech. Sci. Technol., 2008, 22(9): 1699-1706.
  • 3CHANG C, PAWAR S J, WENG S, et al. Effect of nonlinear stiffness on the total harmonic distortion and sound pressure level of a circular miniature loudspeaker- experiments and simulations[J]. IEEE Trans. Consum. Electron., 2012, 58(2): 212-220.
  • 4PAWAR S J, WENG S, HUANG J H. Total harmonic dis- tortion improvement for elliptical miniature loudspeaker based on suspension stiffness nonlinearity[J]. IEEE Trans. Consum. Electron., 2012, 58(2): 221-227.
  • 5KLIPPEL W. Dynamic measurement and interpretation of the nonlinear parameters of electrodynamic loudspeak- ers[J]. J. Audio Eng. Soc., 1990, 38(12): 944-955.
  • 6KLIPPEL W. Tutorial: loudspeaker nonlinearities-causes, parameters, symptoms[J]. J. Audio Eng. Soc., 2006, 54(10): 907-939.
  • 7KLIPPEL W. Diagnosis and remedy of nonlinearities in electrodynamical transducers[C]//Audio Engineering So- ciety Convention 109. Audio Eng. Soc., 2000.
  • 8KLIPPEL W, SEIDEL U. Measurement of impulsive dis- tortion, rub and buzz and other disturbances[C]//AudioEngineering Society Convention 114. Audio Eng. Soc., 2003.
  • 9SMALL R H. Closed-box loudspeaker systems-Part 1: small signal analysis[J]. J. Audio Eng. Soc., 1972, (10): 798-808.
  • 10KAIZER A J M. Modeling of the nonlinear response of an electrodynamic loudspeaker by a Volterra series ex-pansion[J]. J. Audio Eng. Soc., 1987, 35(6): 421 433.

共引文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部