期刊文献+

基于空间模糊C均值聚类和贝叶斯网络的高分一号遥感影像变化检测 被引量:3

Change Detection of GF-1 Remote Sensing Image Based on Spatial Fuzzy C-means Clustering and Bayesian Network
在线阅读 下载PDF
导出
摘要 在目前经典的变化检测算法中,后验概率空间变化向量分析(CVAPS)方法广泛用于遥感影像的变化检测。然而,基于支持向量机(SVM)的CVAPS法无法有效处理高分一号影像中等分辨率遥感影像中的混合像元问题,且难以有效保证变化检测的精度。因此,本文通过引入空间信息,使用空间模糊C均值聚类(Spatial Fuzzy C Means, SFCM)有效地实现高分一号影像混合像元的分解,并结合简单贝叶斯网络(SBN),提出一种新的后验概率空间变化向量分析法SFCM-SBN-CVAPS。实验结果表明,本文算法的总体精度和Kappa系数均高于基于普通模糊C均值聚类(Fuzzy C Means, FCM)的CVAPS算法,且耗时更短,本文所提出的算法有助于提高遥感影像变化检测的精度和效率。 Among the current classical change detection algorithms,the change vector analysis in posterior probability space(CVAPS)method is widely used in the change detection of remote sensing images.However,the CVAPS method based on support vector machine(SVM)can not effectively deal with the mixed pixel problem in GF-1 medium resolution remote sensing image,and it is difficult to guarantee the accuracy of change detection effectively.Therefore,by introducing spatial information and using spatial fuzzy c-means clustering(SFCM),this paper effectively decomposes the mixed pixels of GF-1 imagery and proposes a new SFCM-SBN-CVAPS method combined with a simple Bayesian network(SBN).The experimental results show that this algorithm's overall accuracy and Kappa coefficient are higher than the CVAPS algorithm based on regular fuzzy c-means clustering(FCM)with a shorter time.Experiments show that the proposed algorithm is helpful to improve the accuracy and efficiency of remote sensing image change detection.
作者 杨洋 李轶鲲 杨树文 宋嘉鑫 YANG Yang;LI Yikun;YANG Shuwen;SONG Jiaxin(Faculty of Geomatics,Lanzhou Jiaotong University,Lanzhou 730070,China;National-Local Joint Engineering Research Center of Technologies and Applications for National Geographic State Monitoring,Lanzhou 730070,China;Gansu Provincial Engineering Laboratory for National Geographic State Monitoring,Lanzhou 730070,China)
出处 《测绘与空间地理信息》 2023年第4期34-37,42,共5页 Geomatics & Spatial Information Technology
基金 国家自然科学基金项目——基于高分辨率卫星影像的彩钢板建筑与城市空间结构演变关系研究(41761082) 国家重点研发计划(地球观测与导航)项目——星空地遥感立体监测技术(2017YFB0504201) 兰州交通大学(201806)优秀平台资助。
关键词 遥感影像变化检测 空间模糊C均值聚类 模糊C均值聚类 简单贝叶斯网络 后验概率空间变化向量分析 remote sensing image change detection spatial fuzzy c-means clustering fuzzy c-means clustering simple Bayesian network change vector analysis in posterior probability space
  • 相关文献

参考文献8

二级参考文献55

  • 1张新波.两阶段模糊C-均值聚类算法[J].电路与系统学报,2005,10(2):117-120. 被引量:21
  • 2AGOURIS P, STEFANIDIS A. Intelligent image retrieval large database using shape and topology[ J]. IEEE International Conference on Image Processing (ICIP) 98, 1998 (2) :779 -783.
  • 3ASCHIEL D, PELIZZARI H, QUARTULLI A, et al. Information mining in remote sensing image archives:system concepts [ J ]. IEEE Transactions on Geoscience and Remote Sensing, 2003,41 (12) :2 923 -2 935.
  • 4RICHARD E N. Learning bayesian networks [ M ]. Prentice Hall ,2004.
  • 5LI YIKUN, TIMO R. Bretschneider, Semantic - sensitive satellite image retrieval [ J ]. IEEE Transactions on Geoscience and RemoteSensing, 2007,45 (4) :853 - 860.
  • 6LI Y, BRETSCHNEIDER T, Learning in semantic - seneitive satellite image retrieval [ M/CD]. Proc Asia GIS, 2006.
  • 7CHEN Y, WANG Y Z, KROVETZ R. CLUE:Cluster- bansed retrieval of images by unsupervised learning [ J ]. IEEE Trans Image Process. 2005,14(8) :1187 -1201.
  • 8Hild H,Haala N,Fritsch D.A Strategry for Automatic Image to Map Registration[M].International Archives of Photogrammetry and Remote Sensing,Amsterdam,2000
  • 9黄华文 常本义.利用GIS遥感数据更新GIS的研究[J].测绘学院学报,1997,14(3):182-185.
  • 10Weismiller R A.Change Detection in Coastal Zone Environments[J].Photogrammetric Engineering and Remote Sensing,1997(43):1 533-1 539

共引文献85

同被引文献46

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部