期刊文献+

浅水波方程的旋转不变性及自适应求解

Rotational Invariance and Adaptive Solution of Shallow Water Wave Equation
在线阅读 下载PDF
导出
摘要 针对二维浅水波方程数值求解问题,对该类方程通量函数的旋转不变性进行了理论推导,构造了基于移动网格的混合旋转通量法。基于变分原理的自适应移动网格法能够将网格根据解的特点自适应分布,且网格移动与微分方程数值求解相互独立。混合旋转通量法能够保留熵稳定格式和HLL格式的优点,且克服了因网格扭曲变形造成的计算中断问题。数值结果表明所构造算法所得数值结果分辨率高,算法鲁棒性强。 In order to solve the two-dimensional shallow water wave equations,the flux functions of rotational invariance for these equations were derived theoretically,and a hybrid rotating flux method based on moving mesh was proposed.The adaptive moving mesh method based on variational principle could adaptively distribute the mesh according to the characteristics of the solution,and the mesh movement was independent of the differential equation.The hybrid rotating flux method could retain the advantages of the entropy stable scheme and the HLL scheme,and overcome the computational interruption caused by the distortion of the mesh.Numerical results showed that the proposed algorithm had high resolution and strong robustness.
作者 李霄 郑素佩 王令 封建湖 LI Xiao;ZHENG Supei;WANG Ling;FENG Jianhu(School of Mathematics and Computer Science,Ningxia Normal University,Guyuan 756000,China;School of Science,Chang′an University,Xi′an 710064,China;China Aerodynamics Research and Development Center,Mianyang 621000,China)
出处 《郑州大学学报(理学版)》 CAS 北大核心 2023年第4期75-81,共7页 Journal of Zhengzhou University:Natural Science Edition
基金 国家自然科学基金项目(11971075) 陕西省自然科学基金项目(2020JQ-338,2019JM-243)。
关键词 旋转不变性 移动网格法 旋转混合通量 RUNGE-KUTTA法 rotation invariance moving grid method rotational mixed flux Runge-Kutta method
  • 相关文献

参考文献5

二级参考文献29

  • 1杨继明,陈艳萍.一类奇异摄动对流扩散边值问题的移动网格方法[J].湘潭大学自然科学学报,2004,26(3):24-29. 被引量:12
  • 2潘存鸿.三角形网格下求解二维浅水方程的和谐Godunov格式[J].水科学进展,2007,18(2):204-209. 被引量:41
  • 3Iske A,Sonar T.On the structure of function spaces in optimal recoveru of point functionals ENO-schemes by radial basis functions[J].Numer Math,1996,74:177-201.
  • 4Sonar T.Optimal recovery using thin plate splines in finite volume methods for the numerical solution of hyperbolic conservation laws[J].IMA Journal of Numerical Analysis,1996,16:549-581.
  • 5Buhmann M D.Radial basis functions[M].Acta Numerica,2000.
  • 6Abgrall R.On essentially non-oscillatory schemes on unstructured meshes[J].J Comp Phy,1994,14(1):45-58.
  • 7Hiroaki Nishikawa,Keiichi Kitamura.Very simple, carbuncle-free, boundary-layer-resolving, rotated-hybrid Riemann solvers[J].Journal of Computational Physics.2007(4)
  • 8Y.Chauvat,J.‐M.Moschetta,J.Gressier.Shock wave numerical structure and the carbuncle phenomenon[J].Int J Numer Meth Fluids (鈥?).2005(8鈥?)
  • 9Michael Dumbser,Jean-Marc Moschetta,Jérémie Gressier.A matrix stability analysis of the carbuncle phenomenon[J].Journal of Computational Physics.2004(2)
  • 10Sung-soo Kim,Chongam Kim,Oh-Hyun Rho,Seung Kyu Hong.Cures for the shock instability: Development of a shock-stable Roe scheme[J].Journal of Computational Physics.2003(2)

共引文献22

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部