摘要
针对属性值由精确数据构成的多属性群决策问题,设置了三种多属性群决策算法.对评价专家组给出的评价表进行规范化和归一化处理,建立决策矩阵,根据离差最大化思想与熵值法分别确定评价专家权重与属性权重,采用经典集结属性数据的方法计算方案综合属性值并对方案排序;建立决策矩阵,将评价专家组对属性的评价值构造成区间数,利用区间数的积型贴近度公式对每个方案的属性评价值与属性正负理想属性值进行测度,算出每个方案的综合属性测度结果,根据方案的综合属性测度结果大小对方案排序;利用模型把决策矩阵中的精确数据转化为区间直觉模糊数,采用区间直觉模糊数加权平均算子对属性值集结进而对方案排序.通过一个数值算例验证了各算法的可行性,并总结了各算法的优缺点.
Aiming at the problem of multi-attribute group decision making with exact data,three algorithms of multi-attribute group decision making are proposed.The evaluation table given by the evaluation group was normalized,the decision matrix was established,the weight of evaluation experts and attribute weight were determined respectively according to the idea of maximum deviation and entropy value method,and the comprehensive attribute value of the scheme was calculated and the scheme was ranked by using the classical aggregation attribute data method.Establish decision matrix,evaluation expert group on the value of attribute structure into interval number,using the multiplicative degree formula of interval number attribute value of each scheme and the positive and negative ideal attribute value to measure,calculate the comprehensive attribute measure result of each scheme,according to the result of comprehensive attribute measure of size of ranking;The exact data in the decision matrix are transformed into interval intuitionistic fuzzy numbers by the model,and the weighted average operator of interval intuitionistic fuzzy numbers is used to aggregate the attribute values and then order the schemes.The feasibility of each algorithm is verified by a numerical example,and the advantages and disadvantages of each algorithm are summarized.
作者
朱国成
陈利群
ZHU Guo-cheng;CHENG Li-qun(School of General Education,Guangdong Innovative Technical College,Dongguan 523960,China)
出处
《喀什大学学报》
2021年第6期13-20,共8页
Journal of Kashi University
基金
广东创新科技职业学院特色创新类重点资助项目“确定专家权重方案的模糊多属性群决策方法”(2020TSZD005).
关键词
多属性群决策
算法
精确数刻画
属性值
区间数
区间直觉模糊数
multi-attribute group decision making
algorithm
accurate number characterization
attribute value
interval number
interval intuitionistic fuzzy number