期刊文献+

改进蚁群算法的超密集网络资源分配方法仿真 被引量:3

Simulation of Super Dense Network Resource Allocation Method Based on Improved Ant Colony Algorithm
在线阅读 下载PDF
导出
摘要 为实现高频段网络的高流量密度、高峰值速率性能,超密集组网是当前高速网络的关键部署架构。由于其小区域密集化特点,多元化资源的分配成为保持网络效率的关键性问题。提出基于蚁群算法优化的超密集网络资源分配方法。构建超密集网络基站资源发送和接收模型,以此为依据分析资源在超密集网络中的分布特性和传输特点;建立超密集网络资源分配目标函数,采用蚁群算法求解目标函数,完成超密集网络资源的最优分配。实验验证了上述方法获得CDF曲线与实际CDF曲线相符,资源传输成功率始终处于0.8以上,且在测试过程中始终将资源消耗比例控制在0.02以内,具有较高的频谱效率,以上实验测试结果均证明了所提方法的网络资源分配效果更好。 In order to achieve high traffic density and high peak rate of high-frequency networks,hyperdense networking becomes the key architecture of high-speed networks.In this paper,a resource allocation method for hyperdense networks was proposed based on Ant Colony Algorithm(ACA).Firstly,a model of resource sending and receiving in hyperdense network base station was built.On this basis,the distribution and transmission characteristics of resources in hyperdense network were analyzed.Then,objective functions of resource allocation in hyperdense network were established.Moreover,the ant colony algorithm was used to solve these functions,and thus to complete the optimal allocation of resources in hyperdense network.Experiment results prove that the CDF curve obtained by the proposed method is consistent with the actual curve,and the success rate of resource transmission is always above 0.8.In addition,the resource consumption ratio is always controlled within 0.02 during the test,with high spectral efficiency.Therefore,the proposed method has better effect on network resource allocation.
作者 李金磊 翟海亭 LI Jin-lei;ZHAI Hai-ting(Shangqiu Institute of Technology,Shangqiu Henan 476000,China;Aviation Basic College,Naval Aviation University,Qingdao Shandong 264000,China)
出处 《计算机仿真》 北大核心 2023年第4期377-381,共5页 Computer Simulation
关键词 蚁群算法 超密集网络 节点分簇 网络资源分配 资源分配目标函数 Ant colony algorithm Hyperdense network Node cluster Network resource allocation Target function of resource allocation
  • 相关文献

参考文献15

二级参考文献85

共引文献123

同被引文献26

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部