期刊文献+

多悬臂梁振动能量收集器的仿真与试验 被引量:2

Simulation and Experiment on Vibration Energy Harvester with Multi-Cantilever Beam
在线阅读 下载PDF
导出
摘要 气动系统已广泛应用于工业生产中,其工作时排出的气体直接进入大气,因而浪费了大量的能量。该文以聚偏二氟乙烯(PVDF)压电片作为能量收集器核心部件,对排出的压缩气体进行了能量收集。设计了多悬臂梁振动能量收集器,利用ANSYS有限元仿真软件分析了压缩气体进入能量收集器后的流场,通过试验测试了压电片发电效果。结果表明,入射口直径、扰流柱直径、入射口压力和入射口距扰流柱距离都会影响压电片发电效果。当入射口压力为80 kPa,负载电阻为900 kΩ时,能量收集器总功率约为120.64μW,与其他收集器相比提高了28.8%。 The pneumatic system is widely used in industrial production.When it works,the exhaust gas is directly passed into the atmosphere,resulting in wasting a large amount of energy.In this paper,the polyvinylidene fluoride(PVDF)piezoelectric plate is used as the core component of energy harvester to collect energy from the discharged compressed gas.A vibration energy harvester with multi-cantilever beam was designed,and the flow field of compressed gas entering the energy harvester was analyzed by ANSYS finite element simulation software,the power generation effect of piezoelectric plate was tested experimentally.The results show that the diameter of the incident port,the diameter of the spoiler column,the pressure of the incident port and the distance between the incident port and the spoiler column all affect the power generation effect of the piezoelectric plate.When the incident port pressure is 80 kPa and the load resistance is 900 kΩ,the total power of the energy harvester is up to 120.64μW,which is 28.8%higher than that of other harvesters.
作者 孙黎阳 滕燕 徐迎 SUN Liyang;TENG Yan;XU Ying(School of Mechanical Engineering,Nanjing University of Science&Technology,Nanjing 210094,China)
出处 《压电与声光》 CAS 北大核心 2023年第2期258-263,270,共7页 Piezoelectrics & Acoustooptics
关键词 气动系统 聚偏二氟乙烯(PVDF) 能量收集器 多悬臂梁 输出功率 pneumatic system polyvinylidene fluoride(PVDF) energy harvester multi-cantilever beam output power
  • 相关文献

参考文献7

二级参考文献35

  • 1Beeby S P, Tudor M J, White N M. Energy harvesting vibration sources for microsystems applications [J]. Measurement Science & Technology, 2006, 17 (12) : R175-R195.
  • 2Anton S R, Sodano H A. A review of power harvesting using piezoelectric materials (2003-2006)[J]. Smart Materials & Structures, 2007, 16(3): R1- R21.
  • 3KanJW, Qiu JH, Tang K H, et al. Modeling and simulation of piezoelectric composite diaphragms for energy harvesting [J]. International Journal of Applied Electromagnetics and Mechanics, 2009,30 (1-2): 95-106.
  • 4Erturk A, Inman D J. A distributed parameter electromeehanieal model for cantilevered piezoelectric energy harvesters[J]. ASME Journal of Vibration and Acoustics, 2008,130(4): 041002.
  • 5Dietl J M, Wickenheiser A M, Garcia E. A Timoshenko beam model for cantilevered piezoelectric energy harvesters [J]. Smart Materials & Structures, 2010,19(5): 055018.
  • 6Erturk A, Tarazaga P A, Farmer J R, et al. Effect of strain nodes and electrode configuration on piezoelectric energy harvesting from cantilevered beams [J]. ASME Journal of Vibration and Acoustics, 2009, 131 (1): 011010.
  • 7IEEE/ANSI std 176. IEEE Standard on Piezoelectricity[S]. 1987.
  • 8Cook-Chennauh K A,Thambi N,Sastry A M. Powering MEMS portable devices: a review of non-regenerative and regenerative power supply systems with special emphasis on piezoelectric energy harvesting systems[J]. Smart Mater Struet, 2008,17(4) :1 - 33.
  • 9Jones J, Aga R S, Jr Aga, et al. Multi-layered PVDF systems for enhanced energy harvesting and sensing[J]. Materials Research Society Proc, 2011,1312:45 - 49.
  • 10Lee C S, Joo J, Han S. Poly (vinylidene fluoride) transducers with highly conducting poly (3,4-ethylene dioxythiophene) electrodes[J]. Synthetic Metals,2005, 152(1 -3):49- 52.

共引文献26

同被引文献6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部