期刊文献+

Polygonal finite element-based content-aware image warping

原文传递
导出
摘要 Mesh-based image warping techniques typically represent image deformation using linear functions on triangular meshes or bilinear functions on rectangular meshes.This enables simple and efficient implementation,but in turn,restricts the representation capability of the deformation,often leading to unsatisfactory warping results.We present a novel,flexible polygonal finite element(poly-FEM)method for content-aware image warping.Image deformation is represented by high-order poly-FEMs on a content-aware polygonal mesh with a cell distribution adapted to saliency information in the source image.This allows highly adaptive meshes and smoother warping with fewer degrees of freedom,thus significantly extending the flexibility and capability of the warping representation.Benefiting from the continuous formulation of image deformation,our polyFEM warping method is able to compute the optimal image deformation by minimizing existing or even newly designed warping energies consisting of penalty terms for specific transformations.We demonstrate the versatility of the proposed poly-FEM warping method in representing different deformations and its superiority by comparing it to other existing state-ofthe-art methods.
出处 《Computational Visual Media》 SCIE EI CSCD 2023年第2期367-383,共17页 计算可视媒体(英文版)
基金 The research of Juan Cao was supported by the National Natural Science Foundation of China(Nos.61872308,61972327,and 62272402) the Xiamen Youth Innovation Funds(No.3502Z20206029) Yongjie Jessica Zhang was supported in part by NSF CMMI-1953323 and a Honda grant.
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部