期刊文献+

基于ISMA的多点遍历路径规划方法 被引量:2

Mobile robot multi-goal path planning using improved slime mould algorithm
在线阅读 下载PDF
导出
摘要 针对移动机器人在遍历多目标点的路径规划中存在路径较长且不平滑等问题,本文提出一种基于ISMA的多点遍历路径规划方法。首先,结合Singer映射和小孔成像反向学习策略改进标准黏菌算法(SMA);然后初步构建地图,使用ISMA规划路径,以确定三角网格最大边长的最优值;最后,基于三角网格最大边长的最优值重新构建三角网格地图,使用ISMA生成路径,并通过B样条函数对路径进行光滑处理,提升路径平滑度。基准函数测试结果表明,ISMA收敛速度更快,寻优精度更高。三角网格地图上的路径规划实验表明:ISMA规划的路径长度和平滑度明显优于SMA、SSA和WOA,与SMA、SSA和WOA相比,在较复杂的场景中ISMA生成路径的长度依次减少了6.31%、18.76%和19.74%,验证了ISMA方法的有效性。 Aiming at the problems of long and unsmooth paths in the path planning of mobile robots traversing multiple target points,this paper proposes a multi-point traversal path planning method based on improved SMA.Firstly,the standard slime mold algorithm(SMA)is improved by combining Singer mapping and small hole imaging reverse learning strategy.Then,the map is preliminarily constructed,and the improved SMA is used to plan the path to determine the optimal value of the maximum side length of the triangular mesh.Finally,the triangular grid map is reconstructed based on the optimal value of the maximum edge length of the triangular mesh,the improved SMA is used to generate the path,and the path is smoothed by the B spline function to improve the smoothness of the path.The benchmark function test results show that the improved SMA converges faster and has higher optimization accuracy.Path planning experiments on triangular grid maps show that the path length and smoothness of improved SMA planning are significantly better than those of SMA,SSA and WOA,and compared with SMA,SSA and WOA,the length of the improved SMA generated path in complex scene is reduced by 6.31%,18.76%and 19.74%,which verifies the effectiveness of the improved SMA method.
作者 姜媛媛 李林 朱文昌 Jiang Yuanyuan;Li Lin;Zhu Wenchang(School of Electrical and Information Engineering,Anhui University of Science and Technology,Huainan 232000,China;Institute of Environment-friendly Materials and Occupational Health,Anhui University of Science and Technology,Wuhu 241003,China;School of Institute of Artificial Intelligence,Anhui University of Science and Technology,Huainan 232000,China)
出处 《电子测量与仪器学报》 CSCD 北大核心 2023年第3期202-210,共9页 Journal of Electronic Measurement and Instrumentation
基金 安徽省重点研究与开发计划(202104g01020012) 安徽理工大学环境友好材料与职业健康研究院研发专项基金(ALW2020YF18)项目资助。
关键词 路径规划 反向学习 三角网格地图 ISMA B样条函数 path planning reverse learning triangular grid map improved SMA B spline function
  • 相关文献

参考文献11

二级参考文献91

共引文献512

同被引文献21

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部