期刊文献+

PROPERTIES OF SOLUTIONS TO A HARMONIC-MAPPING TYPE EQUATION WITH A DIRICHLET BOUNDARY CONDITION

在线阅读 下载PDF
导出
摘要 In the present paper, we consider the problem {-△u=u^(β_(1))|■u|^(β_(2)),in Ω,u=0,on ■Ω,u>0,in Ω,(0.1) where β_(1), β_(2) > 0 and β_(1) + β_(2) < 1, and Ω is a convex domain in R~n. The existence, uniqueness,regularity and (2-β_(2))/(1-β_(1)-β_(2))-concavity of the positive solutions of the problem(0.1) are proven.
作者 陈博 陈正茂 谢君辉 Bo CHEN;Zhengmao CHEN;Junhui XIE(School of Mathematics and Statistics,Hubei Minzu University,Enshi,445000,China;School of Mathematics and Information Science,Guangzhou University,Guangzhou,510006,China)
出处 《Acta Mathematica Scientia》 SCIE CSCD 2023年第3期1161-1174,共14页 数学物理学报(B辑英文版)
基金 The first author and the third author were supported by the National Natural Science Foundation of China (11761030) the Cultivation Project for High-Level Scientific Research Achievements of Hubei Minzu University (PY20002) The second author was supported by the China Postdoctoral Science Foundation (2021M690773)。
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部