期刊文献+

基于PSO-LightGBM的网络资产脆弱性评估模型 被引量:2

Vulnerability assessment model of network assets based on PSO-LightGBM
在线阅读 下载PDF
导出
摘要 随着网络空间资产探测技术的不断发展,越来越多的资产脆弱面暴露在公众面前,在一定程度上增加了网络资产的安全风险。对网络资产进行脆弱性评估,可以及时发现脆弱性较强的高危资产,在安全事件未发生时主动对脆弱的网络资产进行保护和修复,从而有效降低网络安全事件发生的概率。现有研究主要集中在网络资产漏洞评估及网络系统脆弱性评估上,对网络资产脆弱性评估方法的研究还比较匮乏。为了更好地保护网络资产安全,提出了一种基于粒子群优化算法轻型梯度提升机(particle swarm optimization-light gradient boosting machine,PSO-LightGBM)的网络资产脆弱性评估模型。首先,依据行业标准和专家经验,提出针对网络资产脆弱性的评估指标体系,并根据从网络中爬取的网络资产数据,经预处理后构建了具有12个属性特征、11类标签值的网络资产脆弱性评估数据集;其次,将PSO算法与LightGBM模型相结合,利用机器学习方法实现网络资产脆弱性的自动化评估;最后,通过实验对比了几种机器学习模型在数据集上的表现,结果表明,基于PSO-LightGBM的网络资产脆弱性评估模型的评估准确率可以达到91.24%,充分验证了该模型的有效性。 With the development of cyberspace assets detection technology,more and more vulnerable assets are exposed to the public,which will increase the security risk of cyber as-sets to a certain extent.Vulnerability assessment of network assets can help people discover vulnerable and high-risk assets in time,and proactively protect and repair vulnerable network assets when security events do not occur,which can effectively reduce the probability of net-work security events.The existing researches mainly focus on the vulnerability assessments of the network assets and the network system,but rarely on the vulnerability assessment methods.In order to better protect the security of network assets,a vulnerability assessment model of network assets based on particle swarm optimization algorithm-light gradient boos-ting machine(PSO-LightGBM)was proposed.First,according to the industry standards and expert experiences,an evaluation index system for vulnerability of network assets was pro-posed.On the basis of the network asset data crawled from the network,a network asset vul-nerability assessment data set with 12 attribute characteristics and 11 types of label values was constructed after pretreatment.Then,light gradient boosting machine(LightGBM)model was combined with particle swarm optimization(PSO)algorithm to realize automatic vulnerability assessment of network assets by machine learning method.Finally,the effec-tiveness of the network asset vulnerability assessment model based on PSO-LightGBM was verified by comparing the performance of several machine learning models on the data set.The experimental results show that this model can accurately assess the vulnerability of net-work assets,with an accuracy of 91.24%.
作者 王晨巍 黎歆雨 高大伟 沈毅 李萌 WANG Chenwei;LI Xinyu;GAO Dawei;SHEN Yi;LI Meng(School of Computer and Information,Hefei University of Technology,Hefei 230009,China;Audit Office of Central Military Commission of People's Republic of China,Beijing 100036,China;College of Electronic Engineering,National University of Defense Technology,Hefei 230037,China)
出处 《信息对抗技术》 2023年第2期54-65,共12页 Information Countermeasures Technology
基金 网络空间安全态势感知与评估安徽省重点实验室开放课题资助项目(CSSAE-2021-009)。
关键词 网络安全 网络空间资产 脆弱性评估 轻型梯度提升机 粒子群优化算法 network security cyberspace assets vulnerability assessment light gradient boosting machine(LightGBM) particle swarm optimization(PSO)algorithm
  • 相关文献

参考文献7

二级参考文献39

共引文献82

同被引文献12

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部