期刊文献+

Research on error accumulation control of three-dimensional adjustment with offset constraint

原文传递
导出
摘要 Background Currently,laser tracker is the primary instrument used to carry out three-dimensional position measurement in accelerator alignment.Theoretically,three-dimensional measuring data processed by three-dimensional adjustment are more rigorous,however,error accumulation is found in practice.Purpose In order to control error accumulation and further improve the measurement accuracy of accelerator alignment,this research introduces the laser alignment system into the activity of measurement and data processing.Methods A measurement scheme combining laser tracker and laser alignment system is proposed.To construct the constraint condition,the offset values from the measuring points to the laser straight-line datum were used.To carry out the three-dimensional adjustment with offset constraint,the laser tracker observations were used.Results A three-dimensional adjustment function model of laser tracker observations is given.The construction method of the constraint equation is researched,and the calculation formulas of the three-dimensional adjustment with offset constraint are derived.A 200 m linac tunnel control network is designed,using simulation measurement method,the measuring data of laser tracker and the offset values from the measuring points to the laser straight-line datum were generated.The simulated data are calculated by the method given in this paper and the result is analyzed.Conclusion Simulation result shows introducing the laser alignment system into laser tracker measurement and applying the three-dimensional adjustment with offset constraint can effectively suppress the error accumulation caused by long distance move station measurement.
出处 《Radiation Detection Technology and Methods》 CSCD 2022年第4期569-576,共8页 辐射探测技术与方法(英文)
基金 Funding was provided by Young Scientists Fund(Grant no.12075264).
  • 相关文献

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部